ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltle Unicode version

Theorem xrltle 9524
Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltle  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  A  <_  B ) )

Proof of Theorem xrltle
StepHypRef Expression
1 xrltnsym 9519 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  -.  B  <  A ) )
2 xrlenlt 7793 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
31, 2sylibrd 168 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  A  <_  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 1463   class class class wbr 3897   RR*cxr 7763    < clt 7764    <_ cle 7765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-pre-ltirr 7696  ax-pre-lttrn 7698
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-cnv 4515  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770
This theorem is referenced by:  xrltled  9525  ioossicc  9682  icossicc  9683  iocssicc  9684  ioossico  9685  ico0  9979  ioc0  9980  bdxmet  12565  metcnpi3  12581
  Copyright terms: Public domain W3C validator