| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrltled | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 9950. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrltled.a |
|
| xrltled.b |
|
| xrltled.altb |
|
| Ref | Expression |
|---|---|
| xrltled |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltled.altb |
. 2
| |
| 2 | xrltled.a |
. . 3
| |
| 3 | xrltled.b |
. . 3
| |
| 4 | xrltle 9950 |
. . 3
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. 2
|
| 6 | 1, 5 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-pre-ltirr 8067 ax-pre-lttrn 8069 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-xp 4694 df-cnv 4696 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 |
| This theorem is referenced by: xrmaxadd 11657 xrbdtri 11672 pcadd2 12749 xblss2ps 14961 xblss2 14962 blhalf 14965 blssps 14984 blss 14985 bdmopn 15061 tgqioo 15112 |
| Copyright terms: Public domain | W3C validator |