ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltled Unicode version

Theorem xrltled 9801
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 9800. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrltled.a  |-  ( ph  ->  A  e.  RR* )
xrltled.b  |-  ( ph  ->  B  e.  RR* )
xrltled.altb  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
xrltled  |-  ( ph  ->  A  <_  B )

Proof of Theorem xrltled
StepHypRef Expression
1 xrltled.altb . 2  |-  ( ph  ->  A  <  B )
2 xrltled.a . . 3  |-  ( ph  ->  A  e.  RR* )
3 xrltled.b . . 3  |-  ( ph  ->  B  e.  RR* )
4 xrltle 9800 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  A  <_  B ) )
52, 3, 4syl2anc 411 . 2  |-  ( ph  ->  ( A  <  B  ->  A  <_  B )
)
61, 5mpd 13 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4005   RR*cxr 7993    < clt 7994    <_ cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000
This theorem is referenced by:  xrmaxadd  11271  xrbdtri  11286  xblss2ps  13989  xblss2  13990  blhalf  13993  blssps  14012  blss  14013  bdmopn  14089  tgqioo  14132
  Copyright terms: Public domain W3C validator