ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltled GIF version

Theorem xrltled 9934
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 9933. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrltled.a (𝜑𝐴 ∈ ℝ*)
xrltled.b (𝜑𝐵 ∈ ℝ*)
xrltled.altb (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
xrltled (𝜑𝐴𝐵)

Proof of Theorem xrltled
StepHypRef Expression
1 xrltled.altb . 2 (𝜑𝐴 < 𝐵)
2 xrltled.a . . 3 (𝜑𝐴 ∈ ℝ*)
3 xrltled.b . . 3 (𝜑𝐵 ∈ ℝ*)
4 xrltle 9933 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
52, 3, 4syl2anc 411 . 2 (𝜑 → (𝐴 < 𝐵𝐴𝐵))
61, 5mpd 13 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177   class class class wbr 4048  *cxr 8119   < clt 8120  cle 8121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-pre-ltirr 8050  ax-pre-lttrn 8052
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-xp 4686  df-cnv 4688  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126
This theorem is referenced by:  xrmaxadd  11622  xrbdtri  11637  pcadd2  12714  xblss2ps  14926  xblss2  14927  blhalf  14930  blssps  14949  blss  14950  bdmopn  15026  tgqioo  15077
  Copyright terms: Public domain W3C validator