ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltled GIF version

Theorem xrltled 9874
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 9873. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrltled.a (𝜑𝐴 ∈ ℝ*)
xrltled.b (𝜑𝐵 ∈ ℝ*)
xrltled.altb (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
xrltled (𝜑𝐴𝐵)

Proof of Theorem xrltled
StepHypRef Expression
1 xrltled.altb . 2 (𝜑𝐴 < 𝐵)
2 xrltled.a . . 3 (𝜑𝐴 ∈ ℝ*)
3 xrltled.b . . 3 (𝜑𝐵 ∈ ℝ*)
4 xrltle 9873 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
52, 3, 4syl2anc 411 . 2 (𝜑 → (𝐴 < 𝐵𝐴𝐵))
61, 5mpd 13 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   class class class wbr 4033  *cxr 8060   < clt 8061  cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  xrmaxadd  11426  xrbdtri  11441  pcadd2  12510  xblss2ps  14640  xblss2  14641  blhalf  14644  blssps  14663  blss  14664  bdmopn  14740  tgqioo  14791
  Copyright terms: Public domain W3C validator