ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elico2 Unicode version

Theorem elico2 9660
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elico2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )

Proof of Theorem elico2
StepHypRef Expression
1 rexr 7775 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 elico1 9646 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )
31, 2sylan 279 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
4 mnfxr 7786 . . . . . . . 8  |- -oo  e.  RR*
54a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  e.  RR* )
61ad2antrr 477 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  A  e.  RR* )
7 simpr1 970 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  e.  RR* )
8 mnflt 9509 . . . . . . . 8  |-  ( A  e.  RR  -> -oo  <  A )
98ad2antrr 477 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  <  A )
10 simpr2 971 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  A  <_  C
)
115, 6, 7, 9, 10xrltletrd 9534 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  <  C )
12 simplr 502 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  B  e.  RR* )
13 pnfxr 7782 . . . . . . . 8  |- +oo  e.  RR*
1413a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> +oo  e.  RR* )
15 simpr3 972 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  <  B
)
16 pnfge 9515 . . . . . . . 8  |-  ( B  e.  RR*  ->  B  <_ +oo )
1716ad2antlr 478 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  B  <_ +oo )
187, 12, 14, 15, 17xrltletrd 9534 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  < +oo )
19 xrrebnd 9542 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
207, 19syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
2111, 18, 20mpbir2and 911 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  e.  RR )
2221, 10, 153jca 1144 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )
2322ex 114 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e. 
RR*  /\  A  <_  C  /\  C  <  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) ) )
24 rexr 7775 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
25243anim1i 1150 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  < 
B ) )
2623, 25impbid1 141 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e. 
RR*  /\  A  <_  C  /\  C  <  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) ) )
273, 26bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   RRcr 7583   +oocpnf 7761   -oocmnf 7762   RR*cxr 7763    < clt 7764    <_ cle 7765   [,)cico 9613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-ico 9617
This theorem is referenced by:  icossre  9677  elicopnf  9692  icoshft  9713  modqelico  10047  mulqaddmodid  10077  modqmuladdim  10080  addmodid  10085  icodiamlt  10892  cnbl0  12598
  Copyright terms: Public domain W3C validator