Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elico2 | Unicode version |
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elico2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7965 | . . 3 | |
2 | elico1 9880 | . . 3 | |
3 | 1, 2 | sylan 281 | . 2 |
4 | mnfxr 7976 | . . . . . . . 8 | |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | 1 | ad2antrr 485 | . . . . . . 7 |
7 | simpr1 998 | . . . . . . 7 | |
8 | mnflt 9740 | . . . . . . . 8 | |
9 | 8 | ad2antrr 485 | . . . . . . 7 |
10 | simpr2 999 | . . . . . . 7 | |
11 | 5, 6, 7, 9, 10 | xrltletrd 9768 | . . . . . 6 |
12 | simplr 525 | . . . . . . 7 | |
13 | pnfxr 7972 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 |
15 | simpr3 1000 | . . . . . . 7 | |
16 | pnfge 9746 | . . . . . . . 8 | |
17 | 16 | ad2antlr 486 | . . . . . . 7 |
18 | 7, 12, 14, 15, 17 | xrltletrd 9768 | . . . . . 6 |
19 | xrrebnd 9776 | . . . . . . 7 | |
20 | 7, 19 | syl 14 | . . . . . 6 |
21 | 11, 18, 20 | mpbir2and 939 | . . . . 5 |
22 | 21, 10, 15 | 3jca 1172 | . . . 4 |
23 | 22 | ex 114 | . . 3 |
24 | rexr 7965 | . . . 4 | |
25 | 24 | 3anim1i 1180 | . . 3 |
26 | 23, 25 | impbid1 141 | . 2 |
27 | 3, 26 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 cico 9847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-ico 9851 |
This theorem is referenced by: icossre 9911 elicopnf 9926 icoshft 9947 modqelico 10290 mulqaddmodid 10320 modqmuladdim 10323 addmodid 10328 icodiamlt 11144 fprodge0 11600 fprodge1 11602 cnbl0 13328 cosq34lt1 13565 cos02pilt1 13566 |
Copyright terms: Public domain | W3C validator |