Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elico2 | Unicode version |
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elico2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7944 | . . 3 | |
2 | elico1 9859 | . . 3 | |
3 | 1, 2 | sylan 281 | . 2 |
4 | mnfxr 7955 | . . . . . . . 8 | |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | 1 | ad2antrr 480 | . . . . . . 7 |
7 | simpr1 993 | . . . . . . 7 | |
8 | mnflt 9719 | . . . . . . . 8 | |
9 | 8 | ad2antrr 480 | . . . . . . 7 |
10 | simpr2 994 | . . . . . . 7 | |
11 | 5, 6, 7, 9, 10 | xrltletrd 9747 | . . . . . 6 |
12 | simplr 520 | . . . . . . 7 | |
13 | pnfxr 7951 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 |
15 | simpr3 995 | . . . . . . 7 | |
16 | pnfge 9725 | . . . . . . . 8 | |
17 | 16 | ad2antlr 481 | . . . . . . 7 |
18 | 7, 12, 14, 15, 17 | xrltletrd 9747 | . . . . . 6 |
19 | xrrebnd 9755 | . . . . . . 7 | |
20 | 7, 19 | syl 14 | . . . . . 6 |
21 | 11, 18, 20 | mpbir2and 934 | . . . . 5 |
22 | 21, 10, 15 | 3jca 1167 | . . . 4 |
23 | 22 | ex 114 | . . 3 |
24 | rexr 7944 | . . . 4 | |
25 | 24 | 3anim1i 1175 | . . 3 |
26 | 23, 25 | impbid1 141 | . 2 |
27 | 3, 26 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 cico 9826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-ico 9830 |
This theorem is referenced by: icossre 9890 elicopnf 9905 icoshft 9926 modqelico 10269 mulqaddmodid 10299 modqmuladdim 10302 addmodid 10307 icodiamlt 11122 fprodge0 11578 fprodge1 11580 cnbl0 13174 cosq34lt1 13411 cos02pilt1 13412 |
Copyright terms: Public domain | W3C validator |