| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elicc2 | Unicode version | ||
| Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elicc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8192 |
. . 3
| |
| 2 | rexr 8192 |
. . 3
| |
| 3 | elicc1 10120 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | mnfxr 8203 |
. . . . . . . 8
| |
| 6 | 5 | a1i 9 |
. . . . . . 7
|
| 7 | 1 | ad2antrr 488 |
. . . . . . 7
|
| 8 | simpr1 1027 |
. . . . . . 7
| |
| 9 | mnflt 9979 |
. . . . . . . 8
| |
| 10 | 9 | ad2antrr 488 |
. . . . . . 7
|
| 11 | simpr2 1028 |
. . . . . . 7
| |
| 12 | 6, 7, 8, 10, 11 | xrltletrd 10007 |
. . . . . 6
|
| 13 | 2 | ad2antlr 489 |
. . . . . . 7
|
| 14 | pnfxr 8199 |
. . . . . . . 8
| |
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | simpr3 1029 |
. . . . . . 7
| |
| 17 | ltpnf 9976 |
. . . . . . . 8
| |
| 18 | 17 | ad2antlr 489 |
. . . . . . 7
|
| 19 | 8, 13, 15, 16, 18 | xrlelttrd 10006 |
. . . . . 6
|
| 20 | xrrebnd 10015 |
. . . . . . 7
| |
| 21 | 8, 20 | syl 14 |
. . . . . 6
|
| 22 | 12, 19, 21 | mpbir2and 950 |
. . . . 5
|
| 23 | 22, 11, 16 | 3jca 1201 |
. . . 4
|
| 24 | 23 | ex 115 |
. . 3
|
| 25 | rexr 8192 |
. . . 4
| |
| 26 | 25 | 3anim1i 1209 |
. . 3
|
| 27 | 24, 26 | impbid1 142 |
. 2
|
| 28 | 4, 27 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-icc 10091 |
| This theorem is referenced by: elicc2i 10135 iccssre 10151 iccsupr 10162 iccneg 10185 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 iccf1o 10200 suplociccreex 15298 suplociccex 15299 ivthinclemlopn 15310 ivthinclemuopn 15312 |
| Copyright terms: Public domain | W3C validator |