| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elicc2 | Unicode version | ||
| Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elicc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8153 |
. . 3
| |
| 2 | rexr 8153 |
. . 3
| |
| 3 | elicc1 10081 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | mnfxr 8164 |
. . . . . . . 8
| |
| 6 | 5 | a1i 9 |
. . . . . . 7
|
| 7 | 1 | ad2antrr 488 |
. . . . . . 7
|
| 8 | simpr1 1006 |
. . . . . . 7
| |
| 9 | mnflt 9940 |
. . . . . . . 8
| |
| 10 | 9 | ad2antrr 488 |
. . . . . . 7
|
| 11 | simpr2 1007 |
. . . . . . 7
| |
| 12 | 6, 7, 8, 10, 11 | xrltletrd 9968 |
. . . . . 6
|
| 13 | 2 | ad2antlr 489 |
. . . . . . 7
|
| 14 | pnfxr 8160 |
. . . . . . . 8
| |
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | simpr3 1008 |
. . . . . . 7
| |
| 17 | ltpnf 9937 |
. . . . . . . 8
| |
| 18 | 17 | ad2antlr 489 |
. . . . . . 7
|
| 19 | 8, 13, 15, 16, 18 | xrlelttrd 9967 |
. . . . . 6
|
| 20 | xrrebnd 9976 |
. . . . . . 7
| |
| 21 | 8, 20 | syl 14 |
. . . . . 6
|
| 22 | 12, 19, 21 | mpbir2and 947 |
. . . . 5
|
| 23 | 22, 11, 16 | 3jca 1180 |
. . . 4
|
| 24 | 23 | ex 115 |
. . 3
|
| 25 | rexr 8153 |
. . . 4
| |
| 26 | 25 | 3anim1i 1188 |
. . 3
|
| 27 | 24, 26 | impbid1 142 |
. 2
|
| 28 | 4, 27 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-icc 10052 |
| This theorem is referenced by: elicc2i 10096 iccssre 10112 iccsupr 10123 iccneg 10146 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 iccf1o 10161 suplociccreex 15211 suplociccex 15212 ivthinclemlopn 15223 ivthinclemuopn 15225 |
| Copyright terms: Public domain | W3C validator |