ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicore Unicode version

Theorem elicore 10159
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elicore  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )

Proof of Theorem elicore
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9791 . . . . . . 7  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elixx3g 9798 . . . . . 6  |-  ( C  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
32biimpi 119 . . . . 5  |-  ( C  e.  ( A [,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
43simpld 111 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* ) )
54simp3d 996 . . 3  |-  ( C  e.  ( A [,) B )  ->  C  e.  RR* )
65adantl 275 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR* )
7 simpl 108 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  A  e.  RR )
83simprd 113 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  <_  C  /\  C  <  B ) )
98simpld 111 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  <_  C )
109adantl 275 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  A  <_  C )
114simp2d 995 . . . 4  |-  ( C  e.  ( A [,) B )  ->  B  e.  RR* )
1211adantl 275 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  B  e.  RR* )
13 pnfxr 7924 . . . 4  |- +oo  e.  RR*
1413a1i 9 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  -> +oo  e.  RR* )
158simprd 113 . . . 4  |-  ( C  e.  ( A [,) B )  ->  C  <  B )
1615adantl 275 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  <  B )
17 pnfge 9689 . . . . 5  |-  ( B  e.  RR*  ->  B  <_ +oo )
1811, 17syl 14 . . . 4  |-  ( C  e.  ( A [,) B )  ->  B  <_ +oo )
1918adantl 275 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  B  <_ +oo )
206, 12, 14, 16, 19xrltletrd 9708 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  < +oo )
21 xrre3 9719 . 2  |-  ( ( ( C  e.  RR*  /\  A  e.  RR )  /\  ( A  <_  C  /\  C  < +oo ) )  ->  C  e.  RR )
226, 7, 10, 20, 21syl22anc 1221 1  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 2128   class class class wbr 3965  (class class class)co 5821   RRcr 7725   +oocpnf 7903   RR*cxr 7905    < clt 7906    <_ cle 7907   [,)cico 9787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-ico 9791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator