ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicore Unicode version

Theorem elicore 10409
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elicore  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )

Proof of Theorem elicore
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 10016 . . . . . . 7  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elixx3g 10023 . . . . . 6  |-  ( C  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
32biimpi 120 . . . . 5  |-  ( C  e.  ( A [,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
43simpld 112 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* ) )
54simp3d 1014 . . 3  |-  ( C  e.  ( A [,) B )  ->  C  e.  RR* )
65adantl 277 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR* )
7 simpl 109 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  A  e.  RR )
83simprd 114 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  <_  C  /\  C  <  B ) )
98simpld 112 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  <_  C )
109adantl 277 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  A  <_  C )
114simp2d 1013 . . . 4  |-  ( C  e.  ( A [,) B )  ->  B  e.  RR* )
1211adantl 277 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  B  e.  RR* )
13 pnfxr 8125 . . . 4  |- +oo  e.  RR*
1413a1i 9 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  -> +oo  e.  RR* )
158simprd 114 . . . 4  |-  ( C  e.  ( A [,) B )  ->  C  <  B )
1615adantl 277 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  <  B )
17 pnfge 9911 . . . . 5  |-  ( B  e.  RR*  ->  B  <_ +oo )
1811, 17syl 14 . . . 4  |-  ( C  e.  ( A [,) B )  ->  B  <_ +oo )
1918adantl 277 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  B  <_ +oo )
206, 12, 14, 16, 19xrltletrd 9933 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  < +oo )
21 xrre3 9944 . 2  |-  ( ( ( C  e.  RR*  /\  A  e.  RR )  /\  ( A  <_  C  /\  C  < +oo ) )  ->  C  e.  RR )
226, 7, 10, 20, 21syl22anc 1251 1  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   +oocpnf 8104   RR*cxr 8106    < clt 8107    <_ cle 8108   [,)cico 10012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-ico 10016
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator