ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre3 Unicode version

Theorem xrre3 10018
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
xrre3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  A  e.  RR )

Proof of Theorem xrre3
StepHypRef Expression
1 mnflt 9979 . . . . . 6  |-  ( B  e.  RR  -> -oo  <  B )
21adantl 277 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  -> -oo  <  B )
3 mnfxr 8203 . . . . . . 7  |- -oo  e.  RR*
43a1i 9 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  -> -oo  e.  RR* )
5 rexr 8192 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  RR* )
65adantl 277 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  e.  RR* )
7 simpl 109 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  A  e.  RR* )
8 xrltletr 10003 . . . . . 6  |-  ( ( -oo  e.  RR*  /\  B  e.  RR*  /\  A  e. 
RR* )  ->  (
( -oo  <  B  /\  B  <_  A )  -> -oo  <  A ) )
94, 6, 7, 8syl3anc 1271 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( -oo  <  B  /\  B  <_  A )  -> -oo  <  A ) )
102, 9mpand 429 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( B  <_  A  -> -oo  <  A ) )
1110imp 124 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  B  <_  A
)  -> -oo  <  A
)
1211adantrr 479 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  -> -oo  <  A )
13 simprr 531 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  A  < +oo )
14 xrrebnd 10015 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
1514ad2antrr 488 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
1612, 13, 15mpbir2and 950 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4083   RRcr 7998   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180    < clt 8181    <_ cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-po 4387  df-iso 4388  df-xp 4725  df-cnv 4727  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187
This theorem is referenced by:  elicore  10486
  Copyright terms: Public domain W3C validator