ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre3 Unicode version

Theorem xrre3 9758
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
xrre3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  A  e.  RR )

Proof of Theorem xrre3
StepHypRef Expression
1 mnflt 9719 . . . . . 6  |-  ( B  e.  RR  -> -oo  <  B )
21adantl 275 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  -> -oo  <  B )
3 mnfxr 7955 . . . . . . 7  |- -oo  e.  RR*
43a1i 9 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  -> -oo  e.  RR* )
5 rexr 7944 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  RR* )
65adantl 275 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  e.  RR* )
7 simpl 108 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  A  e.  RR* )
8 xrltletr 9743 . . . . . 6  |-  ( ( -oo  e.  RR*  /\  B  e.  RR*  /\  A  e. 
RR* )  ->  (
( -oo  <  B  /\  B  <_  A )  -> -oo  <  A ) )
94, 6, 7, 8syl3anc 1228 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( -oo  <  B  /\  B  <_  A )  -> -oo  <  A ) )
102, 9mpand 426 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( B  <_  A  -> -oo  <  A ) )
1110imp 123 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  B  <_  A
)  -> -oo  <  A
)
1211adantrr 471 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  -> -oo  <  A )
13 simprr 522 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  A  < +oo )
14 xrrebnd 9755 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
1514ad2antrr 480 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
1612, 13, 15mpbir2and 934 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B  <_  A  /\  A  < +oo ) )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   class class class wbr 3982   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    < clt 7933    <_ cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-po 4274  df-iso 4275  df-xp 4610  df-cnv 4612  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  elicore  10202
  Copyright terms: Public domain W3C validator