ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre2 Unicode version

Theorem xrre2 9896
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
xrre2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  ->  B  e.  RR )

Proof of Theorem xrre2
StepHypRef Expression
1 mnfle 9867 . . . . . . 7  |-  ( A  e.  RR*  -> -oo  <_  A )
21adantr 276 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> -oo  <_  A )
3 mnfxr 8083 . . . . . . 7  |- -oo  e.  RR*
4 xrlelttr 9881 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
( -oo  <_  A  /\  A  <  B )  -> -oo  <  B ) )
53, 4mp3an1 1335 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( -oo  <_  A  /\  A  <  B )  -> -oo  <  B ) )
62, 5mpand 429 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  -> -oo  <  B ) )
763adant3 1019 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  B  -> -oo  <  B ) )
8 pnfge 9864 . . . . . . 7  |-  ( C  e.  RR*  ->  C  <_ +oo )
98adantl 277 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  C  <_ +oo )
10 pnfxr 8079 . . . . . . 7  |- +oo  e.  RR*
11 xrltletr 9882 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( B  <  C  /\  C  <_ +oo )  ->  B  < +oo ) )
1210, 11mp3an3 1337 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
( B  <  C  /\  C  <_ +oo )  ->  B  < +oo )
)
139, 12mpan2d 428 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <  C  ->  B  < +oo ) )
14133adant1 1017 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <  C  ->  B  < +oo ) )
157, 14anim12d 335 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  ( -oo  <  B  /\  B  < +oo ) ) )
16 xrrebnd 9894 . . . 4  |-  ( B  e.  RR*  ->  ( B  e.  RR  <->  ( -oo  <  B  /\  B  < +oo ) ) )
17163ad2ant2 1021 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  e.  RR  <->  ( -oo  <  B  /\  B  < +oo ) ) )
1815, 17sylibrd 169 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  B  e.  RR ) )
1918imp 124 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  ->  B  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4033   RRcr 7878   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060    < clt 8061    <_ cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-po 4331  df-iso 4332  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  elioore  9987  tgioo  14790
  Copyright terms: Public domain W3C validator