ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre2 Unicode version

Theorem xrre2 9790
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
xrre2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  ->  B  e.  RR )

Proof of Theorem xrre2
StepHypRef Expression
1 mnfle 9761 . . . . . . 7  |-  ( A  e.  RR*  -> -oo  <_  A )
21adantr 276 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> -oo  <_  A )
3 mnfxr 7988 . . . . . . 7  |- -oo  e.  RR*
4 xrlelttr 9775 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
( -oo  <_  A  /\  A  <  B )  -> -oo  <  B ) )
53, 4mp3an1 1324 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( -oo  <_  A  /\  A  <  B )  -> -oo  <  B ) )
62, 5mpand 429 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  -> -oo  <  B ) )
763adant3 1017 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  B  -> -oo  <  B ) )
8 pnfge 9758 . . . . . . 7  |-  ( C  e.  RR*  ->  C  <_ +oo )
98adantl 277 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  C  <_ +oo )
10 pnfxr 7984 . . . . . . 7  |- +oo  e.  RR*
11 xrltletr 9776 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( B  <  C  /\  C  <_ +oo )  ->  B  < +oo ) )
1210, 11mp3an3 1326 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
( B  <  C  /\  C  <_ +oo )  ->  B  < +oo )
)
139, 12mpan2d 428 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <  C  ->  B  < +oo ) )
14133adant1 1015 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <  C  ->  B  < +oo ) )
157, 14anim12d 335 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  ( -oo  <  B  /\  B  < +oo ) ) )
16 xrrebnd 9788 . . . 4  |-  ( B  e.  RR*  ->  ( B  e.  RR  <->  ( -oo  <  B  /\  B  < +oo ) ) )
17163ad2ant2 1019 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  e.  RR  <->  ( -oo  <  B  /\  B  < +oo ) ) )
1815, 17sylibrd 169 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  B  e.  RR ) )
1918imp 124 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  ->  B  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2146   class class class wbr 3998   RRcr 7785   +oocpnf 7963   -oocmnf 7964   RR*cxr 7965    < clt 7966    <_ cle 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-po 4290  df-iso 4291  df-xp 4626  df-cnv 4628  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972
This theorem is referenced by:  elioore  9881  tgioo  13615
  Copyright terms: Public domain W3C validator