![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrre3 | GIF version |
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.) |
Ref | Expression |
---|---|
xrre3 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 9785 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → -∞ < 𝐵) | |
2 | 1 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵) |
3 | mnfxr 8016 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
4 | 3 | a1i 9 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → -∞ ∈ ℝ*) |
5 | rexr 8005 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*) |
7 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*) | |
8 | xrltletr 9809 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((-∞ < 𝐵 ∧ 𝐵 ≤ 𝐴) → -∞ < 𝐴)) | |
9 | 4, 6, 7, 8 | syl3anc 1238 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((-∞ < 𝐵 ∧ 𝐵 ≤ 𝐴) → -∞ < 𝐴)) |
10 | 2, 9 | mpand 429 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 → -∞ < 𝐴)) |
11 | 10 | imp 124 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → -∞ < 𝐴) |
12 | 11 | adantrr 479 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → -∞ < 𝐴) |
13 | simprr 531 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 < +∞) | |
14 | xrrebnd 9821 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | |
15 | 14 | ad2antrr 488 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
16 | 12, 13, 15 | mpbir2and 944 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4005 ℝcr 7812 +∞cpnf 7991 -∞cmnf 7992 ℝ*cxr 7993 < clt 7994 ≤ cle 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-po 4298 df-iso 4299 df-xp 4634 df-cnv 4636 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 |
This theorem is referenced by: elicore 10269 |
Copyright terms: Public domain | W3C validator |