Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrre3 | GIF version |
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.) |
Ref | Expression |
---|---|
xrre3 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 9719 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → -∞ < 𝐵) | |
2 | 1 | adantl 275 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵) |
3 | mnfxr 7955 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
4 | 3 | a1i 9 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → -∞ ∈ ℝ*) |
5 | rexr 7944 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
6 | 5 | adantl 275 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*) |
7 | simpl 108 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*) | |
8 | xrltletr 9743 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((-∞ < 𝐵 ∧ 𝐵 ≤ 𝐴) → -∞ < 𝐴)) | |
9 | 4, 6, 7, 8 | syl3anc 1228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((-∞ < 𝐵 ∧ 𝐵 ≤ 𝐴) → -∞ < 𝐴)) |
10 | 2, 9 | mpand 426 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 → -∞ < 𝐴)) |
11 | 10 | imp 123 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → -∞ < 𝐴) |
12 | 11 | adantrr 471 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → -∞ < 𝐴) |
13 | simprr 522 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 < +∞) | |
14 | xrrebnd 9755 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | |
15 | 14 | ad2antrr 480 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
16 | 12, 13, 15 | mpbir2and 934 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 < clt 7933 ≤ cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-po 4274 df-iso 4275 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: elicore 10202 |
Copyright terms: Public domain | W3C validator |