ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre3 GIF version

Theorem xrre3 9791
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
xrre3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre3
StepHypRef Expression
1 mnflt 9752 . . . . . 6 (𝐵 ∈ ℝ → -∞ < 𝐵)
21adantl 277 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -∞ < 𝐵)
3 mnfxr 7988 . . . . . . 7 -∞ ∈ ℝ*
43a1i 9 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -∞ ∈ ℝ*)
5 rexr 7977 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
65adantl 277 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
7 simpl 109 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
8 xrltletr 9776 . . . . . 6 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
94, 6, 7, 8syl3anc 1238 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
102, 9mpand 429 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 → -∞ < 𝐴))
1110imp 124 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐵𝐴) → -∞ < 𝐴)
1211adantrr 479 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → -∞ < 𝐴)
13 simprr 531 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 < +∞)
14 xrrebnd 9788 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1514ad2antrr 488 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1612, 13, 15mpbir2and 944 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2146   class class class wbr 3998  cr 7785  +∞cpnf 7963  -∞cmnf 7964  *cxr 7965   < clt 7966  cle 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-po 4290  df-iso 4291  df-xp 4626  df-cnv 4628  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972
This theorem is referenced by:  elicore  10235
  Copyright terms: Public domain W3C validator