ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre3 GIF version

Theorem xrre3 9605
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
xrre3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre3
StepHypRef Expression
1 mnflt 9569 . . . . . 6 (𝐵 ∈ ℝ → -∞ < 𝐵)
21adantl 275 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -∞ < 𝐵)
3 mnfxr 7822 . . . . . . 7 -∞ ∈ ℝ*
43a1i 9 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -∞ ∈ ℝ*)
5 rexr 7811 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
65adantl 275 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
7 simpl 108 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
8 xrltletr 9590 . . . . . 6 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
94, 6, 7, 8syl3anc 1216 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
102, 9mpand 425 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 → -∞ < 𝐴))
1110imp 123 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐵𝐴) → -∞ < 𝐴)
1211adantrr 470 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → -∞ < 𝐴)
13 simprr 521 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 < +∞)
14 xrrebnd 9602 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1514ad2antrr 479 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1612, 13, 15mpbir2and 928 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480   class class class wbr 3929  cr 7619  +∞cpnf 7797  -∞cmnf 7798  *cxr 7799   < clt 7800  cle 7801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-po 4218  df-iso 4219  df-xp 4545  df-cnv 4547  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator