ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrege0 Unicode version

Theorem xrrege0 9982
Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrrege0  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  A  e.  RR )

Proof of Theorem xrrege0
StepHypRef Expression
1 ge0gtmnf 9980 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )
21ad2ant2r 509 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  -> -oo  <  A )
3 simprr 531 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  A  <_  B )
42, 3jca 306 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( -oo  <  A  /\  A  <_  B ) )
5 xrre 9977 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  A  e.  RR )
64, 5syldan 282 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   class class class wbr 4059   RRcr 7959   0cc0 7960   -oocmnf 8140   RR*cxr 8141    < clt 8142    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-po 4361  df-iso 4362  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  psmetlecl  14921  xmetlecl  14954  bdmet  15089  bdmopn  15091
  Copyright terms: Public domain W3C validator