ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  z2ge Unicode version

Theorem z2ge 9609
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. k  e.  ZZ  ( M  <_  k  /\  N  <_  k ) )
Distinct variable groups:    k, M    k, N

Proof of Theorem z2ge
StepHypRef Expression
1 simplr 519 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N
)  ->  N  e.  ZZ )
2 simpr 109 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N
)  ->  M  <_  N )
31zred 9173 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N
)  ->  N  e.  RR )
43leidd 8276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N
)  ->  N  <_  N )
5 breq2 3933 . . . . 5  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
6 breq2 3933 . . . . 5  |-  ( k  =  N  ->  ( N  <_  k  <->  N  <_  N ) )
75, 6anbi12d 464 . . . 4  |-  ( k  =  N  ->  (
( M  <_  k  /\  N  <_  k )  <-> 
( M  <_  N  /\  N  <_  N ) ) )
87rspcev 2789 . . 3  |-  ( ( N  e.  ZZ  /\  ( M  <_  N  /\  N  <_  N ) )  ->  E. k  e.  ZZ  ( M  <_  k  /\  N  <_  k ) )
91, 2, 4, 8syl12anc 1214 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N
)  ->  E. k  e.  ZZ  ( M  <_ 
k  /\  N  <_  k ) )
10 simpll 518 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  ZZ )
1110zred 9173 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  RR )
1211leidd 8276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <_  M
)  ->  M  <_  M )
13 simpr 109 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <_  M
)  ->  N  <_  M )
14 breq2 3933 . . . . 5  |-  ( k  =  M  ->  ( M  <_  k  <->  M  <_  M ) )
15 breq2 3933 . . . . 5  |-  ( k  =  M  ->  ( N  <_  k  <->  N  <_  M ) )
1614, 15anbi12d 464 . . . 4  |-  ( k  =  M  ->  (
( M  <_  k  /\  N  <_  k )  <-> 
( M  <_  M  /\  N  <_  M ) ) )
1716rspcev 2789 . . 3  |-  ( ( M  e.  ZZ  /\  ( M  <_  M  /\  N  <_  M ) )  ->  E. k  e.  ZZ  ( M  <_  k  /\  N  <_  k ) )
1810, 12, 13, 17syl12anc 1214 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <_  M
)  ->  E. k  e.  ZZ  ( M  <_ 
k  /\  N  <_  k ) )
19 zletric 9098 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  \/  N  <_  M ) )
209, 18, 19mpjaodan 787 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. k  e.  ZZ  ( M  <_  k  /\  N  <_  k ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929    <_ cle 7801   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator