ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre Unicode version

Theorem xrre 9343
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
Assertion
Ref Expression
xrre  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  A  e.  RR )

Proof of Theorem xrre
StepHypRef Expression
1 simprl 499 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  -> -oo  <  A )
2 ltpnf 9312 . . . . . 6  |-  ( B  e.  RR  ->  B  < +oo )
32adantl 272 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  < +oo )
4 rexr 7594 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
5 pnfxr 7601 . . . . . . 7  |- +oo  e.  RR*
6 xrlelttr 9332 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( A  <_  B  /\  B  < +oo )  ->  A  < +oo ) )
75, 6mp3an3 1263 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <_  B  /\  B  < +oo )  ->  A  < +oo )
)
84, 7sylan2 281 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A  <_  B  /\  B  < +oo )  ->  A  < +oo )
)
93, 8mpan2d 420 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  ->  A  < +oo ) )
109imp 123 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  <_  B
)  ->  A  < +oo )
1110adantrl 463 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  A  < +oo )
12 xrrebnd 9342 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
1312ad2antrr 473 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
141, 11, 13mpbir2and 891 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1439   class class class wbr 3851   RRcr 7410   +oocpnf 7580   -oocmnf 7581   RR*cxr 7582    < clt 7583    <_ cle 7584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-po 4132  df-iso 4133  df-xp 4458  df-cnv 4460  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589
This theorem is referenced by:  xrrege0  9348
  Copyright terms: Public domain W3C validator