| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrre | Unicode version | ||
| Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) |
| Ref | Expression |
|---|---|
| xrre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. 2
| |
| 2 | ltpnf 9872 |
. . . . . 6
| |
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | rexr 8089 |
. . . . . 6
| |
| 5 | pnfxr 8096 |
. . . . . . 7
| |
| 6 | xrlelttr 9898 |
. . . . . . 7
| |
| 7 | 5, 6 | mp3an3 1337 |
. . . . . 6
|
| 8 | 4, 7 | sylan2 286 |
. . . . 5
|
| 9 | 3, 8 | mpan2d 428 |
. . . 4
|
| 10 | 9 | imp 124 |
. . 3
|
| 11 | 10 | adantrl 478 |
. 2
|
| 12 | xrrebnd 9911 |
. . 3
| |
| 13 | 12 | ad2antrr 488 |
. 2
|
| 14 | 1, 11, 13 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-po 4332 df-iso 4333 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: xrrege0 9917 pcgcd1 12522 tgioo 14874 |
| Copyright terms: Public domain | W3C validator |