ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre Unicode version

Theorem xrre 9977
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
Assertion
Ref Expression
xrre  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  A  e.  RR )

Proof of Theorem xrre
StepHypRef Expression
1 simprl 529 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  -> -oo  <  A )
2 ltpnf 9937 . . . . . 6  |-  ( B  e.  RR  ->  B  < +oo )
32adantl 277 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  < +oo )
4 rexr 8153 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
5 pnfxr 8160 . . . . . . 7  |- +oo  e.  RR*
6 xrlelttr 9963 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( A  <_  B  /\  B  < +oo )  ->  A  < +oo ) )
75, 6mp3an3 1339 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <_  B  /\  B  < +oo )  ->  A  < +oo )
)
84, 7sylan2 286 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A  <_  B  /\  B  < +oo )  ->  A  < +oo )
)
93, 8mpan2d 428 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  ->  A  < +oo ) )
109imp 124 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  <_  B
)  ->  A  < +oo )
1110adantrl 478 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  A  < +oo )
12 xrrebnd 9976 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
1312ad2antrr 488 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
141, 11, 13mpbir2and 947 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B
) )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   class class class wbr 4059   RRcr 7959   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-po 4361  df-iso 4362  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  xrrege0  9982  pcgcd1  12766  tgioo  15141
  Copyright terms: Public domain W3C validator