ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st2ndbr GIF version

Theorem 1st2ndbr 6270
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
1st2ndbr ((Rel 𝐵𝐴𝐵) → (1st𝐴)𝐵(2nd𝐴))

Proof of Theorem 1st2ndbr
StepHypRef Expression
1 1st2nd 6267 . . 3 ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 simpr 110 . . 3 ((Rel 𝐵𝐴𝐵) → 𝐴𝐵)
31, 2eqeltrrd 2283 . 2 ((Rel 𝐵𝐴𝐵) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝐵)
4 df-br 4045 . 2 ((1st𝐴)𝐵(2nd𝐴) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝐵)
53, 4sylibr 134 1 ((Rel 𝐵𝐴𝐵) → (1st𝐴)𝐵(2nd𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176  cop 3636   class class class wbr 4044  Rel wrel 4680  cfv 5271  1st c1st 6224  2nd c2nd 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226  df-2nd 6227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator