ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2on GIF version

Theorem 2on 6521
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
2on 2o ∈ On

Proof of Theorem 2on
StepHypRef Expression
1 df-2o 6513 . 2 2o = suc 1o
2 1on 6519 . . 3 1o ∈ On
32onsuci 4569 . 2 suc 1o ∈ On
41, 3eqeltri 2279 1 2o ∈ On
Colors of variables: wff set class
Syntax hints:  wcel 2177  Oncon0 4415  suc csuc 4417  1oc1o 6505  2oc2o 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-uni 3854  df-tr 4148  df-iord 4418  df-on 4420  df-suc 4423  df-1o 6512  df-2o 6513
This theorem is referenced by:  3on  6523  infnninf  7238  onntri35  7362  bj-charfunbi  15861
  Copyright terms: Public domain W3C validator