ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem3 GIF version

Theorem 4sqlem3 12528
Description: Lemma for 4sq 12548. Sufficient condition to be in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem3
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))
2 oveq1 5925 . . . . . . 7 (𝑐 = 𝐶 → (𝑐↑2) = (𝐶↑2))
32oveq1d 5933 . . . . . 6 (𝑐 = 𝐶 → ((𝑐↑2) + (𝑑↑2)) = ((𝐶↑2) + (𝑑↑2)))
43oveq2d 5934 . . . . 5 (𝑐 = 𝐶 → (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))))
54eqeq2d 2205 . . . 4 (𝑐 = 𝐶 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2)))))
6 oveq1 5925 . . . . . . 7 (𝑑 = 𝐷 → (𝑑↑2) = (𝐷↑2))
76oveq2d 5934 . . . . . 6 (𝑑 = 𝐷 → ((𝐶↑2) + (𝑑↑2)) = ((𝐶↑2) + (𝐷↑2)))
87oveq2d 5934 . . . . 5 (𝑑 = 𝐷 → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
98eqeq2d 2205 . . . 4 (𝑑 = 𝐷 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
105, 9rspc2ev 2879 . . 3 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
111, 10mp3an3 1337 . 2 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
12 oveq1 5925 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
1312oveq1d 5933 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑎↑2) + (𝑏↑2)) = ((𝐴↑2) + (𝑏↑2)))
1413oveq1d 5933 . . . . . . 7 (𝑎 = 𝐴 → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
1514eqeq2d 2205 . . . . . 6 (𝑎 = 𝐴 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
16152rexbidv 2519 . . . . 5 (𝑎 = 𝐴 → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
17 oveq1 5925 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
1817oveq2d 5934 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐴↑2) + (𝑏↑2)) = ((𝐴↑2) + (𝐵↑2)))
1918oveq1d 5933 . . . . . . 7 (𝑏 = 𝐵 → (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
2019eqeq2d 2205 . . . . . 6 (𝑏 = 𝐵 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))))
21202rexbidv 2519 . . . . 5 (𝑏 = 𝐵 → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))))
2216, 21rspc2ev 2879 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
23223expa 1205 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
24 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem2 12527 . . 3 ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2623, 25sylibr 134 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
2711, 26sylan2 286 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  wrex 2473  (class class class)co 5918   + caddc 7875  2c2 9033  cz 9317  cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  4sqlem4a  12529
  Copyright terms: Public domain W3C validator