ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem3 GIF version

Theorem 4sqlem3 12684
Description: Lemma for 4sq 12704. Sufficient condition to be in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem3
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . 3 (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))
2 oveq1 5950 . . . . . . 7 (𝑐 = 𝐶 → (𝑐↑2) = (𝐶↑2))
32oveq1d 5958 . . . . . 6 (𝑐 = 𝐶 → ((𝑐↑2) + (𝑑↑2)) = ((𝐶↑2) + (𝑑↑2)))
43oveq2d 5959 . . . . 5 (𝑐 = 𝐶 → (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))))
54eqeq2d 2216 . . . 4 (𝑐 = 𝐶 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2)))))
6 oveq1 5950 . . . . . . 7 (𝑑 = 𝐷 → (𝑑↑2) = (𝐷↑2))
76oveq2d 5959 . . . . . 6 (𝑑 = 𝐷 → ((𝐶↑2) + (𝑑↑2)) = ((𝐶↑2) + (𝐷↑2)))
87oveq2d 5959 . . . . 5 (𝑑 = 𝐷 → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
98eqeq2d 2216 . . . 4 (𝑑 = 𝐷 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
105, 9rspc2ev 2891 . . 3 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
111, 10mp3an3 1338 . 2 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
12 oveq1 5950 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
1312oveq1d 5958 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑎↑2) + (𝑏↑2)) = ((𝐴↑2) + (𝑏↑2)))
1413oveq1d 5958 . . . . . . 7 (𝑎 = 𝐴 → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
1514eqeq2d 2216 . . . . . 6 (𝑎 = 𝐴 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
16152rexbidv 2530 . . . . 5 (𝑎 = 𝐴 → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
17 oveq1 5950 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
1817oveq2d 5959 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐴↑2) + (𝑏↑2)) = ((𝐴↑2) + (𝐵↑2)))
1918oveq1d 5958 . . . . . . 7 (𝑏 = 𝐵 → (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
2019eqeq2d 2216 . . . . . 6 (𝑏 = 𝐵 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))))
21202rexbidv 2530 . . . . 5 (𝑏 = 𝐵 → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))))
2216, 21rspc2ev 2891 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
23223expa 1205 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
24 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem2 12683 . . 3 ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2623, 25sylibr 134 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
2711, 26sylan2 286 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {cab 2190  wrex 2484  (class class class)co 5943   + caddc 7927  2c2 9086  cz 9371  cexp 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591  df-exp 10682
This theorem is referenced by:  4sqlem4a  12685
  Copyright terms: Public domain W3C validator