ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem3 GIF version

Theorem 4sqlem3 12388
Description: Lemma for 4sq (not yet proved here) . Sufficient condition to be in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem3
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3 (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))
2 oveq1 5882 . . . . . . 7 (𝑐 = 𝐶 → (𝑐↑2) = (𝐶↑2))
32oveq1d 5890 . . . . . 6 (𝑐 = 𝐶 → ((𝑐↑2) + (𝑑↑2)) = ((𝐶↑2) + (𝑑↑2)))
43oveq2d 5891 . . . . 5 (𝑐 = 𝐶 → (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))))
54eqeq2d 2189 . . . 4 (𝑐 = 𝐶 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2)))))
6 oveq1 5882 . . . . . . 7 (𝑑 = 𝐷 → (𝑑↑2) = (𝐷↑2))
76oveq2d 5891 . . . . . 6 (𝑑 = 𝐷 → ((𝐶↑2) + (𝑑↑2)) = ((𝐶↑2) + (𝐷↑2)))
87oveq2d 5891 . . . . 5 (𝑑 = 𝐷 → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
98eqeq2d 2189 . . . 4 (𝑑 = 𝐷 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
105, 9rspc2ev 2857 . . 3 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
111, 10mp3an3 1326 . 2 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
12 oveq1 5882 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
1312oveq1d 5890 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑎↑2) + (𝑏↑2)) = ((𝐴↑2) + (𝑏↑2)))
1413oveq1d 5890 . . . . . . 7 (𝑎 = 𝐴 → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
1514eqeq2d 2189 . . . . . 6 (𝑎 = 𝐴 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
16152rexbidv 2502 . . . . 5 (𝑎 = 𝐴 → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
17 oveq1 5882 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
1817oveq2d 5891 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐴↑2) + (𝑏↑2)) = ((𝐴↑2) + (𝐵↑2)))
1918oveq1d 5890 . . . . . . 7 (𝑏 = 𝐵 → (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2))))
2019eqeq2d 2189 . . . . . 6 (𝑏 = 𝐵 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))))
21202rexbidv 2502 . . . . 5 (𝑏 = 𝐵 → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))))
2216, 21rspc2ev 2857 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
23223expa 1203 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
24 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem2 12387 . . 3 ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2623, 25sylibr 134 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
2711, 26sylan2 286 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {cab 2163  wrex 2456  (class class class)co 5875   + caddc 7814  2c2 8970  cz 9253  cexp 10519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446  df-exp 10520
This theorem is referenced by:  4sqlem4a  12389
  Copyright terms: Public domain W3C validator