ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divelunit GIF version

Theorem divelunit 9417
Description: A condition for a ratio to be a member of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
divelunit (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ (0[,]1) ↔ 𝐴𝐵))

Proof of Theorem divelunit
StepHypRef Expression
1 0re 7486 . . . 4 0 ∈ ℝ
2 1re 7485 . . . 4 1 ∈ ℝ
31, 2elicc2i 9355 . . 3 ((𝐴 / 𝐵) ∈ (0[,]1) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
4 df-3an 926 . . 3 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) ↔ (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐴 / 𝐵) ≤ 1))
53, 4bitri 182 . 2 ((𝐴 / 𝐵) ∈ (0[,]1) ↔ (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐴 / 𝐵) ≤ 1))
6 ledivmul 8336 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
72, 6mp3an2 1261 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
87adantlr 461 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
9 simpll 496 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
10 simprl 498 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
11 gt0ap0 8100 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 # 0)
1211adantl 271 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 # 0)
139, 10, 12redivclapd 8299 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
14 divge0 8332 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
1513, 14jca 300 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)))
1615biantrurd 299 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐴 / 𝐵) ≤ 1)))
17 recn 7473 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1817ad2antrl 474 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
1918mulid1d 7503 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐵 · 1) = 𝐵)
2019breq2d 3857 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
218, 16, 203bitr3d 216 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐴 / 𝐵) ≤ 1) ↔ 𝐴𝐵))
225, 21syl5bb 190 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ (0[,]1) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924  wcel 1438   class class class wbr 3845  (class class class)co 5652  cc 7346  cr 7347  0cc0 7348  1c1 7349   · cmul 7353   < clt 7520  cle 7521   # cap 8056   / cdiv 8137  [,]cicc 9307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-icc 9311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator