Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmet | GIF version |
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
Ref | Expression |
---|---|
cnmet | ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7898 | . 2 ⊢ ℂ ∈ V | |
2 | absf 11074 | . . 3 ⊢ abs:ℂ⟶ℝ | |
3 | subf 8121 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
4 | fco 5363 | . . 3 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
5 | 2, 3, 4 | mp2an 424 | . 2 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
6 | subcl 8118 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
7 | 6 | abs00ad 11029 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
8 | eqid 2170 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
9 | 8 | cnmetdval 13323 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
10 | 9 | eqcomd 2176 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) = (𝑥(abs ∘ − )𝑦)) |
11 | 10 | eqeq1d 2179 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥(abs ∘ − )𝑦) = 0)) |
12 | subeq0 8145 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
13 | 7, 11, 12 | 3bitr3d 217 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) = 0 ↔ 𝑥 = 𝑦)) |
14 | abs3dif 11069 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦)))) | |
15 | abssub 11065 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑧)) = (abs‘(𝑧 − 𝑥))) | |
16 | 15 | oveq1d 5868 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
17 | 16 | 3adant2 1011 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
18 | 14, 17 | breqtrd 4015 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
19 | 9 | 3adant3 1012 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
20 | 8 | cnmetdval 13323 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
21 | 20 | 3adant3 1012 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
22 | 8 | cnmetdval 13323 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
23 | 22 | 3adant2 1011 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
24 | 21, 23 | oveq12d 5871 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
25 | 24 | 3coml 1205 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
26 | 18, 19, 25 | 3brtr4d 4021 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) ≤ ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦))) |
27 | 1, 5, 13, 26 | ismeti 13140 | 1 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 × cxp 4609 ∘ ccom 4615 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 + caddc 7777 ≤ cle 7955 − cmin 8090 abscabs 10961 Metcmet 12775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-met 12783 |
This theorem is referenced by: cnxmet 13325 remet 13334 |
Copyright terms: Public domain | W3C validator |