ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmet GIF version

Theorem cnmet 13663
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
Assertion
Ref Expression
cnmet (abs ∘ − ) ∈ (Met‘ℂ)

Proof of Theorem cnmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7913 . 2 ℂ ∈ V
2 absf 11090 . . 3 abs:ℂ⟶ℝ
3 subf 8136 . . 3 − :(ℂ × ℂ)⟶ℂ
4 fco 5376 . . 3 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
52, 3, 4mp2an 426 . 2 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
6 subcl 8133 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
76abs00ad 11045 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦)) = 0 ↔ (𝑥𝑦) = 0))
8 eqid 2177 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 13662 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
109eqcomd 2183 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (𝑥(abs ∘ − )𝑦))
1110eqeq1d 2186 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦)) = 0 ↔ (𝑥(abs ∘ − )𝑦) = 0))
12 subeq0 8160 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
137, 11, 123bitr3d 218 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) = 0 ↔ 𝑥 = 𝑦))
14 abs3dif 11085 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
15 abssub 11081 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥𝑧)) = (abs‘(𝑧𝑥)))
1615oveq1d 5883 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
17163adant2 1016 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
1814, 17breqtrd 4026 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
1993adant3 1017 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
208cnmetdval 13662 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧𝑥)))
21203adant3 1017 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧𝑥)))
228cnmetdval 13662 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧𝑦)))
23223adant2 1016 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧𝑦)))
2421, 23oveq12d 5886 . . . 4 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
25243coml 1210 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
2618, 19, 253brtr4d 4032 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) ≤ ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)))
271, 5, 13, 26ismeti 13479 1 (abs ∘ − ) ∈ (Met‘ℂ)
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 978   = wceq 1353  wcel 2148   × cxp 4620  ccom 4626  wf 5207  cfv 5211  (class class class)co 5868  cc 7787  cr 7788  0cc0 7789   + caddc 7792  cle 7970  cmin 8105  abscabs 10977  Metcmet 13114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-mulrcl 7888  ax-addcom 7889  ax-mulcom 7890  ax-addass 7891  ax-mulass 7892  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-1rid 7896  ax-0id 7897  ax-rnegex 7898  ax-precex 7899  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-apti 7904  ax-pre-ltadd 7905  ax-pre-mulgt0 7906  ax-pre-mulext 7907  ax-arch 7908  ax-caucvg 7909
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-po 4292  df-iso 4293  df-iord 4362  df-on 4364  df-ilim 4365  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-recs 6299  df-frec 6385  df-map 6643  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-reap 8509  df-ap 8516  df-div 8606  df-inn 8896  df-2 8954  df-3 8955  df-4 8956  df-n0 9153  df-z 9230  df-uz 9505  df-rp 9628  df-seqfrec 10419  df-exp 10493  df-cj 10822  df-re 10823  df-im 10824  df-rsqrt 10978  df-abs 10979  df-met 13122
This theorem is referenced by:  cnxmet  13664  remet  13673
  Copyright terms: Public domain W3C validator