ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrec GIF version

Theorem ltrec 8665
Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltrec (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))

Proof of Theorem ltrec
StepHypRef Expression
1 1red 7805 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 1 ∈ ℝ)
2 simprl 521 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
3 simpll 519 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
4 simplr 520 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < 𝐴)
5 ltmuldiv 8656 . . . 4 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
61, 2, 3, 4, 5syl112anc 1221 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
73recnd 7818 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
87mulid2d 7808 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 · 𝐴) = 𝐴)
98breq1d 3947 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 · 𝐴) < 𝐵𝐴 < 𝐵))
102recnd 7818 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
113, 4gt0ap0d 8415 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 # 0)
1210, 7, 11divrecapd 8577 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐵 / 𝐴) = (𝐵 · (1 / 𝐴)))
1312breq2d 3949 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 < (𝐵 / 𝐴) ↔ 1 < (𝐵 · (1 / 𝐴))))
146, 9, 133bitr3d 217 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ 1 < (𝐵 · (1 / 𝐴))))
153, 11rerecclapd 8617 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 / 𝐴) ∈ ℝ)
16 simprr 522 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < 𝐵)
17 ltdivmul 8658 . . 3 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐵) < (1 / 𝐴) ↔ 1 < (𝐵 · (1 / 𝐴))))
181, 15, 2, 16, 17syl112anc 1221 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐵) < (1 / 𝐴) ↔ 1 < (𝐵 · (1 / 𝐴))))
1914, 18bitr4d 190 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644  1c1 7645   · cmul 7649   < clt 7824   / cdiv 8456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457
This theorem is referenced by:  lerec  8666  ltdiv2  8669  ltrec1  8670  reclt1  8678  recgt1  8679  ltreci  8694  nnrecl  8999  ltrecd  9532
  Copyright terms: Public domain W3C validator