Proof of Theorem dvdsmod
| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1004 |
. . . . 5
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝐾 ∈ ℤ) |
| 2 | | zq 9700 |
. . . . 5
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℚ) |
| 3 | 1, 2 | syl 14 |
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝐾 ∈ ℚ) |
| 4 | | simpl2 1003 |
. . . . 5
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑁 ∈ ℕ) |
| 5 | | nnq 9707 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) |
| 6 | 4, 5 | syl 14 |
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑁 ∈ ℚ) |
| 7 | 4 | nngt0d 9034 |
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 0 < 𝑁) |
| 8 | | modqval 10416 |
. . . 4
⊢ ((𝐾 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 <
𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))) |
| 9 | 3, 6, 7, 8 | syl3anc 1249 |
. . 3
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))) |
| 10 | 9 | breq2d 4045 |
. 2
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))) |
| 11 | | simpl1 1002 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑃 ∈ ℕ) |
| 12 | 11 | nnzd 9447 |
. . . . . . 7
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑃 ∈ ℤ) |
| 13 | 4 | nnzd 9447 |
. . . . . . 7
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 14 | | znq 9698 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 / 𝑁) ∈ ℚ) |
| 15 | 1, 4, 14 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝐾 / 𝑁) ∈ ℚ) |
| 16 | 15 | flqcld 10367 |
. . . . . . 7
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
| 17 | | simpr 110 |
. . . . . . 7
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑃 ∥ 𝑁) |
| 18 | 12, 13, 16, 17 | dvdsmultr1d 11997 |
. . . . . 6
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑃 ∥ (𝑁 · (⌊‘(𝐾 / 𝑁)))) |
| 19 | 13, 16 | zmulcld 9454 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ) |
| 20 | 19 | zcnd 9449 |
. . . . . . 7
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℂ) |
| 21 | 20 | subid1d 8326 |
. . . . . 6
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0) = (𝑁 · (⌊‘(𝐾 / 𝑁)))) |
| 22 | 18, 21 | breqtrrd 4061 |
. . . . 5
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)) |
| 23 | | 0zd 9338 |
. . . . . 6
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 0 ∈ ℤ) |
| 24 | | moddvds 11964 |
. . . . . 6
⊢ ((𝑃 ∈ ℕ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ ∧ 0 ∈ ℤ)
→ (((𝑁 ·
(⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0))) |
| 25 | 11, 19, 23, 24 | syl3anc 1249 |
. . . . 5
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0))) |
| 26 | 22, 25 | mpbird 167 |
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃)) |
| 27 | 26 | eqeq2d 2208 |
. . 3
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ (𝐾 mod 𝑃) = (0 mod 𝑃))) |
| 28 | | moddvds 11964 |
. . . 4
⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))) |
| 29 | 11, 1, 19, 28 | syl3anc 1249 |
. . 3
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))) |
| 30 | | moddvds 11964 |
. . . 4
⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈
ℤ) → ((𝐾 mod
𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0))) |
| 31 | 11, 1, 23, 30 | syl3anc 1249 |
. . 3
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0))) |
| 32 | 27, 29, 31 | 3bitr3d 218 |
. 2
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))) ↔ 𝑃 ∥ (𝐾 − 0))) |
| 33 | 1 | zcnd 9449 |
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → 𝐾 ∈ ℂ) |
| 34 | 33 | subid1d 8326 |
. . 3
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝐾 − 0) = 𝐾) |
| 35 | 34 | breq2d 4045 |
. 2
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 − 0) ↔ 𝑃 ∥ 𝐾)) |
| 36 | 10, 32, 35 | 3bitrd 214 |
1
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ 𝐾)) |