Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmod GIF version

Theorem dvdsmod 11727
 Description: Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 987 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℤ)
2 zq 9513 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
31, 2syl 14 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℚ)
4 simpl2 986 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℕ)
5 nnq 9520 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
64, 5syl 14 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℚ)
74nngt0d 8856 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 0 < 𝑁)
8 modqval 10201 . . . 4 ((𝐾 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
93, 6, 7, 8syl3anc 1217 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
109breq2d 3973 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
11 simpl1 985 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℕ)
1211nnzd 9264 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℤ)
134nnzd 9264 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℤ)
14 znq 9511 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 / 𝑁) ∈ ℚ)
151, 4, 14syl2anc 409 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 / 𝑁) ∈ ℚ)
1615flqcld 10154 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (⌊‘(𝐾 / 𝑁)) ∈ ℤ)
17 simpr 109 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃𝑁)
1812, 13, 16, 17dvdsmultr1d 11699 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ (𝑁 · (⌊‘(𝐾 / 𝑁))))
1913, 16zmulcld 9271 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ)
2019zcnd 9266 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℂ)
2120subid1d 8154 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0) = (𝑁 · (⌊‘(𝐾 / 𝑁))))
2218, 21breqtrrd 3988 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0))
23 0zd 9158 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 0 ∈ ℤ)
24 moddvds 11669 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ ∧ 0 ∈ ℤ) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
2511, 19, 23, 24syl3anc 1217 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
2622, 25mpbird 166 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃))
2726eqeq2d 2166 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ (𝐾 mod 𝑃) = (0 mod 𝑃)))
28 moddvds 11669 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
2911, 1, 19, 28syl3anc 1217 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
30 moddvds 11669 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
3111, 1, 23, 30syl3anc 1217 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
3227, 29, 313bitr3d 217 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))) ↔ 𝑃 ∥ (𝐾 − 0)))
331zcnd 9266 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℂ)
3433subid1d 8154 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 − 0) = 𝐾)
3534breq2d 3973 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − 0) ↔ 𝑃𝐾))
3610, 32, 353bitrd 213 1 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 2125   class class class wbr 3961  ‘cfv 5163  (class class class)co 5814  0cc0 7711   · cmul 7716   < clt 7891   − cmin 8025   / cdiv 8524  ℕcn 8812  ℤcz 9146  ℚcq 9506  ⌊cfl 10145   mod cmo 10199   ∥ cdvds 11660 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-n0 9070  df-z 9147  df-q 9507  df-rp 9539  df-fl 10147  df-mod 10200  df-dvds 11661 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator