| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) | 
| 2 |   | cvg1n.f | 
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | 
| 3 | 2 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐹:ℕ⟶ℝ) | 
| 4 |   | cvg1nlem.z | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ ℕ) | 
| 5 | 4 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℕ) | 
| 6 | 1, 5 | nnmulcld 9039 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℕ) | 
| 7 | 3, 6 | ffvelcdmd 5698 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘(𝑛 · 𝑍)) ∈ ℝ) | 
| 8 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑗 = 𝑛 → (𝑗 · 𝑍) = (𝑛 · 𝑍)) | 
| 9 | 8 | fveq2d 5562 | 
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑛 · 𝑍))) | 
| 10 |   | cvg1nlem.g | 
. . . . . . . 8
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) | 
| 11 | 9, 10 | fvmptg 5637 | 
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ (𝐹‘(𝑛 · 𝑍)) ∈ ℝ) → (𝐺‘𝑛) = (𝐹‘(𝑛 · 𝑍))) | 
| 12 | 1, 7, 11 | syl2anc 411 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) = (𝐹‘(𝑛 · 𝑍))) | 
| 13 | 12, 7 | eqeltrd 2273 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) ∈ ℝ) | 
| 14 |   | eluznn 9674 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) | 
| 15 | 14 | adantll 476 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) | 
| 16 | 15, 5 | nnmulcld 9039 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈ ℕ) | 
| 17 | 3, 16 | ffvelcdmd 5698 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘(𝑘 · 𝑍)) ∈ ℝ) | 
| 18 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 · 𝑍) = (𝑘 · 𝑍)) | 
| 19 | 18 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑘 · 𝑍))) | 
| 20 | 19, 10 | fvmptg 5637 | 
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (𝐹‘(𝑘 · 𝑍)) ∈ ℝ) → (𝐺‘𝑘) = (𝐹‘(𝑘 · 𝑍))) | 
| 21 | 15, 17, 20 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) = (𝐹‘(𝑘 · 𝑍))) | 
| 22 | 21, 17 | eqeltrd 2273 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) ∈ ℝ) | 
| 23 |   | cvg1n.c | 
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈
ℝ+) | 
| 24 | 23 | rpred 9771 | 
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| 25 | 24 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐶 ∈ ℝ) | 
| 26 | 25, 6 | nndivred 9040 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / (𝑛 · 𝑍)) ∈ ℝ) | 
| 27 | 22, 26 | readdcld 8056 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∈ ℝ) | 
| 28 | 1 | nnrecred 9037 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (1 / 𝑛) ∈
ℝ) | 
| 29 | 22, 28 | readdcld 8056 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (1 / 𝑛)) ∈ ℝ) | 
| 30 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑘 · 𝑍) → (𝐹‘𝑏) = (𝐹‘(𝑘 · 𝑍))) | 
| 31 | 30 | oveq1d 5937 | 
. . . . . . . . . . 11
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) | 
| 32 | 31 | breq2d 4045 | 
. . . . . . . . . 10
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 33 | 30 | breq1d 4043 | 
. . . . . . . . . 10
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 34 | 32, 33 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑏 = (𝑘 · 𝑍) → (((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) | 
| 35 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑎 = (𝑛 · 𝑍) → (ℤ≥‘𝑎) =
(ℤ≥‘(𝑛 · 𝑍))) | 
| 36 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → (𝐹‘𝑎) = (𝐹‘(𝑛 · 𝑍))) | 
| 37 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑛 · 𝑍) → (𝐶 / 𝑎) = (𝐶 / (𝑛 · 𝑍))) | 
| 38 | 37 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑏) + (𝐶 / 𝑎)) = ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍)))) | 
| 39 | 36, 38 | breq12d 4046 | 
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))))) | 
| 40 | 36, 37 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑎) + (𝐶 / 𝑎)) = ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) | 
| 41 | 40 | breq2d 4045 | 
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)) ↔ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 42 | 39, 41 | anbi12d 473 | 
. . . . . . . . . . 11
⊢ (𝑎 = (𝑛 · 𝑍) → (((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) | 
| 43 | 35, 42 | raleqbidv 2709 | 
. . . . . . . . . 10
⊢ (𝑎 = (𝑛 · 𝑍) → (∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))) ↔ ∀𝑏 ∈ (ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) | 
| 44 |   | cvg1n.cau | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) | 
| 45 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) | 
| 46 | 45 | oveq1d 5937 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) + (𝐶 / 𝑛)) = ((𝐹‘𝑏) + (𝐶 / 𝑛))) | 
| 47 | 46 | breq2d 4045 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)))) | 
| 48 | 45 | breq1d 4043 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) | 
| 49 | 47, 48 | anbi12d 473 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑏 → (((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))))) | 
| 50 | 49 | cbvralv 2729 | 
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) | 
| 51 | 50 | ralbii 2503 | 
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑛 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) | 
| 52 |   | fveq2 5558 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑎)) | 
| 53 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → (𝐹‘𝑛) = (𝐹‘𝑎)) | 
| 54 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → (𝐶 / 𝑛) = (𝐶 / 𝑎)) | 
| 55 | 54 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑏) + (𝐶 / 𝑛)) = ((𝐹‘𝑏) + (𝐶 / 𝑎))) | 
| 56 | 53, 55 | breq12d 4046 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)))) | 
| 57 | 53, 54 | oveq12d 5940 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) + (𝐶 / 𝑛)) = ((𝐹‘𝑎) + (𝐶 / 𝑎))) | 
| 58 | 57 | breq2d 4045 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) | 
| 59 | 56, 58 | anbi12d 473 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → (((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))))) | 
| 60 | 52, 59 | raleqbidv 2709 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑎 → (∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))))) | 
| 61 | 60 | cbvralv 2729 | 
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ ∀𝑏 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) | 
| 62 | 51, 61 | bitri 184 | 
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) | 
| 63 | 44, 62 | sylib 122 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) | 
| 64 | 63 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑎 ∈ ℕ ∀𝑏 ∈
(ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) | 
| 65 | 43, 64, 6 | rspcdva 2873 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑏 ∈
(ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 66 |   | eluzle 9613 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → 𝑛 ≤ 𝑘) | 
| 67 | 66 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑘) | 
| 68 | 1 | nnred 9003 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ) | 
| 69 | 15 | nnred 9003 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℝ) | 
| 70 | 5 | nnrpd 9769 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈
ℝ+) | 
| 71 | 68, 69, 70 | lemul1d 9815 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 ≤ 𝑘 ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) | 
| 72 | 67, 71 | mpbid 147 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ≤ (𝑘 · 𝑍)) | 
| 73 | 6 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℤ) | 
| 74 | 16 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈ ℤ) | 
| 75 |   | eluz 9614 | 
. . . . . . . . . . 11
⊢ (((𝑛 · 𝑍) ∈ ℤ ∧ (𝑘 · 𝑍) ∈ ℤ) → ((𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍)) ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) | 
| 76 | 73, 74, 75 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍)) ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) | 
| 77 | 72, 76 | mpbird 167 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍))) | 
| 78 | 34, 65, 77 | rspcdva 2873 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 79 | 21 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) | 
| 80 | 79 | breq2d 4045 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 81 | 21 | breq1d 4043 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 82 | 80, 81 | anbi12d 473 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) | 
| 83 | 78, 82 | mpbird 167 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 84 | 12 | breq1d 4043 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))))) | 
| 85 | 12 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) | 
| 86 | 85 | breq2d 4045 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) | 
| 87 | 84, 86 | anbi12d 473 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) | 
| 88 | 83, 87 | mpbird 167 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))))) | 
| 89 | 88 | simpld 112 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍)))) | 
| 90 | 5 | nnred 9003 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℝ) | 
| 91 | 1 | nnrpd 9769 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ+) | 
| 92 |   | cvg1nlem.start | 
. . . . . . . . 9
⊢ (𝜑 → 𝐶 < 𝑍) | 
| 93 | 92 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐶 < 𝑍) | 
| 94 | 25, 90, 91, 93 | ltmul1dd 9827 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 · 𝑛) < (𝑍 · 𝑛)) | 
| 95 | 6 | nncnd 9004 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℂ) | 
| 96 | 95 | mulid2d 8045 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (1 · (𝑛 · 𝑍)) = (𝑛 · 𝑍)) | 
| 97 | 96 | breq2d 4045 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (1 · (𝑛 · 𝑍)) ↔ (𝐶 · 𝑛) < (𝑛 · 𝑍))) | 
| 98 |   | 1red 8041 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 1 ∈
ℝ) | 
| 99 | 6 | nnrpd 9769 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈
ℝ+) | 
| 100 | 25, 91, 98, 99 | lt2mul2divd 9840 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (1 · (𝑛 · 𝑍)) ↔ (𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛))) | 
| 101 | 1 | nncnd 9004 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℂ) | 
| 102 | 5 | nncnd 9004 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℂ) | 
| 103 | 101, 102 | mulcomd 8048 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) = (𝑍 · 𝑛)) | 
| 104 | 103 | breq2d 4045 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (𝑛 · 𝑍) ↔ (𝐶 · 𝑛) < (𝑍 · 𝑛))) | 
| 105 | 97, 100, 104 | 3bitr3d 218 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛) ↔ (𝐶 · 𝑛) < (𝑍 · 𝑛))) | 
| 106 | 94, 105 | mpbird 167 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛)) | 
| 107 | 26, 28, 22, 106 | ltadd2dd 8449 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) < ((𝐺‘𝑘) + (1 / 𝑛))) | 
| 108 | 13, 27, 29, 89, 107 | lttrd 8152 | 
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛))) | 
| 109 | 13, 26 | readdcld 8056 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) ∈ ℝ) | 
| 110 | 13, 28 | readdcld 8056 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (1 / 𝑛)) ∈ ℝ) | 
| 111 | 88 | simprd 114 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍)))) | 
| 112 | 26, 28, 13, 106 | ltadd2dd 8449 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) < ((𝐺‘𝑛) + (1 / 𝑛))) | 
| 113 | 22, 109, 110, 111, 112 | lttrd 8152 | 
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛))) | 
| 114 | 108, 113 | jca 306 | 
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) | 
| 115 | 114 | ralrimiva 2570 | 
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) | 
| 116 | 115 | ralrimiva 2570 | 
1
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) |