Step | Hyp | Ref
| Expression |
1 | | simplr 520 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) |
2 | | cvg1n.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
3 | 2 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐹:ℕ⟶ℝ) |
4 | | cvg1nlem.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ ℕ) |
5 | 4 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℕ) |
6 | 1, 5 | nnmulcld 8877 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℕ) |
7 | 3, 6 | ffvelrnd 5602 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘(𝑛 · 𝑍)) ∈ ℝ) |
8 | | oveq1 5828 |
. . . . . . . . 9
⊢ (𝑗 = 𝑛 → (𝑗 · 𝑍) = (𝑛 · 𝑍)) |
9 | 8 | fveq2d 5471 |
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑛 · 𝑍))) |
10 | | cvg1nlem.g |
. . . . . . . 8
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) |
11 | 9, 10 | fvmptg 5543 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ (𝐹‘(𝑛 · 𝑍)) ∈ ℝ) → (𝐺‘𝑛) = (𝐹‘(𝑛 · 𝑍))) |
12 | 1, 7, 11 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) = (𝐹‘(𝑛 · 𝑍))) |
13 | 12, 7 | eqeltrd 2234 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) ∈ ℝ) |
14 | | eluznn 9506 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
15 | 14 | adantll 468 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
16 | 15, 5 | nnmulcld 8877 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈ ℕ) |
17 | 3, 16 | ffvelrnd 5602 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘(𝑘 · 𝑍)) ∈ ℝ) |
18 | | oveq1 5828 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 · 𝑍) = (𝑘 · 𝑍)) |
19 | 18 | fveq2d 5471 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑘 · 𝑍))) |
20 | 19, 10 | fvmptg 5543 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (𝐹‘(𝑘 · 𝑍)) ∈ ℝ) → (𝐺‘𝑘) = (𝐹‘(𝑘 · 𝑍))) |
21 | 15, 17, 20 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) = (𝐹‘(𝑘 · 𝑍))) |
22 | 21, 17 | eqeltrd 2234 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
23 | | cvg1n.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
24 | 23 | rpred 9598 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) |
25 | 24 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐶 ∈ ℝ) |
26 | 25, 6 | nndivred 8878 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / (𝑛 · 𝑍)) ∈ ℝ) |
27 | 22, 26 | readdcld 7902 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∈ ℝ) |
28 | 1 | nnrecred 8875 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (1 / 𝑛) ∈
ℝ) |
29 | 22, 28 | readdcld 7902 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (1 / 𝑛)) ∈ ℝ) |
30 | | fveq2 5467 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑘 · 𝑍) → (𝐹‘𝑏) = (𝐹‘(𝑘 · 𝑍))) |
31 | 30 | oveq1d 5836 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
32 | 31 | breq2d 3977 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
33 | 30 | breq1d 3975 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
34 | 32, 33 | anbi12d 465 |
. . . . . . . . 9
⊢ (𝑏 = (𝑘 · 𝑍) → (((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
35 | | fveq2 5467 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑛 · 𝑍) → (ℤ≥‘𝑎) =
(ℤ≥‘(𝑛 · 𝑍))) |
36 | | fveq2 5467 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → (𝐹‘𝑎) = (𝐹‘(𝑛 · 𝑍))) |
37 | | oveq2 5829 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑛 · 𝑍) → (𝐶 / 𝑎) = (𝐶 / (𝑛 · 𝑍))) |
38 | 37 | oveq2d 5837 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑏) + (𝐶 / 𝑎)) = ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍)))) |
39 | 36, 38 | breq12d 3978 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))))) |
40 | 36, 37 | oveq12d 5839 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑎) + (𝐶 / 𝑎)) = ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
41 | 40 | breq2d 3977 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)) ↔ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
42 | 39, 41 | anbi12d 465 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑛 · 𝑍) → (((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
43 | 35, 42 | raleqbidv 2664 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑛 · 𝑍) → (∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))) ↔ ∀𝑏 ∈ (ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
44 | | cvg1n.cau |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
45 | | fveq2 5467 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) |
46 | 45 | oveq1d 5836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) + (𝐶 / 𝑛)) = ((𝐹‘𝑏) + (𝐶 / 𝑛))) |
47 | 46 | breq2d 3977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)))) |
48 | 45 | breq1d 3975 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
49 | 47, 48 | anbi12d 465 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑏 → (((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))))) |
50 | 49 | cbvralv 2680 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
51 | 50 | ralbii 2463 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑛 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
52 | | fveq2 5467 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑎)) |
53 | | fveq2 5467 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → (𝐹‘𝑛) = (𝐹‘𝑎)) |
54 | | oveq2 5829 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → (𝐶 / 𝑛) = (𝐶 / 𝑎)) |
55 | 54 | oveq2d 5837 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑏) + (𝐶 / 𝑛)) = ((𝐹‘𝑏) + (𝐶 / 𝑎))) |
56 | 53, 55 | breq12d 3978 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)))) |
57 | 53, 54 | oveq12d 5839 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) + (𝐶 / 𝑛)) = ((𝐹‘𝑎) + (𝐶 / 𝑎))) |
58 | 57 | breq2d 3977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
59 | 56, 58 | anbi12d 465 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → (((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))))) |
60 | 52, 59 | raleqbidv 2664 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑎 → (∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))))) |
61 | 60 | cbvralv 2680 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ ∀𝑏 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
62 | 51, 61 | bitri 183 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
63 | 44, 62 | sylib 121 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
64 | 63 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑎 ∈ ℕ ∀𝑏 ∈
(ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
65 | 43, 64, 6 | rspcdva 2821 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑏 ∈
(ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
66 | | eluzle 9446 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → 𝑛 ≤ 𝑘) |
67 | 66 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑘) |
68 | 1 | nnred 8841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ) |
69 | 15 | nnred 8841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℝ) |
70 | 5 | nnrpd 9596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈
ℝ+) |
71 | 68, 69, 70 | lemul1d 9642 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 ≤ 𝑘 ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) |
72 | 67, 71 | mpbid 146 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ≤ (𝑘 · 𝑍)) |
73 | 6 | nnzd 9280 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℤ) |
74 | 16 | nnzd 9280 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈ ℤ) |
75 | | eluz 9447 |
. . . . . . . . . . 11
⊢ (((𝑛 · 𝑍) ∈ ℤ ∧ (𝑘 · 𝑍) ∈ ℤ) → ((𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍)) ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) |
76 | 73, 74, 75 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍)) ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) |
77 | 72, 76 | mpbird 166 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍))) |
78 | 34, 65, 77 | rspcdva 2821 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
79 | 21 | oveq1d 5836 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
80 | 79 | breq2d 3977 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
81 | 21 | breq1d 3975 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
82 | 80, 81 | anbi12d 465 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
83 | 78, 82 | mpbird 166 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
84 | 12 | breq1d 3975 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))))) |
85 | 12 | oveq1d 5836 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
86 | 85 | breq2d 3977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
87 | 84, 86 | anbi12d 465 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
88 | 83, 87 | mpbird 166 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))))) |
89 | 88 | simpld 111 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍)))) |
90 | 5 | nnred 8841 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℝ) |
91 | 1 | nnrpd 9596 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ+) |
92 | | cvg1nlem.start |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 < 𝑍) |
93 | 92 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐶 < 𝑍) |
94 | 25, 90, 91, 93 | ltmul1dd 9654 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 · 𝑛) < (𝑍 · 𝑛)) |
95 | 6 | nncnd 8842 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℂ) |
96 | 95 | mulid2d 7891 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (1 · (𝑛 · 𝑍)) = (𝑛 · 𝑍)) |
97 | 96 | breq2d 3977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (1 · (𝑛 · 𝑍)) ↔ (𝐶 · 𝑛) < (𝑛 · 𝑍))) |
98 | | 1red 7888 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 1 ∈
ℝ) |
99 | 6 | nnrpd 9596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈
ℝ+) |
100 | 25, 91, 98, 99 | lt2mul2divd 9667 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (1 · (𝑛 · 𝑍)) ↔ (𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛))) |
101 | 1 | nncnd 8842 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℂ) |
102 | 5 | nncnd 8842 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℂ) |
103 | 101, 102 | mulcomd 7894 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) = (𝑍 · 𝑛)) |
104 | 103 | breq2d 3977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (𝑛 · 𝑍) ↔ (𝐶 · 𝑛) < (𝑍 · 𝑛))) |
105 | 97, 100, 104 | 3bitr3d 217 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛) ↔ (𝐶 · 𝑛) < (𝑍 · 𝑛))) |
106 | 94, 105 | mpbird 166 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛)) |
107 | 26, 28, 22, 106 | ltadd2dd 8292 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) < ((𝐺‘𝑘) + (1 / 𝑛))) |
108 | 13, 27, 29, 89, 107 | lttrd 7996 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛))) |
109 | 13, 26 | readdcld 7902 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) ∈ ℝ) |
110 | 13, 28 | readdcld 7902 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (1 / 𝑛)) ∈ ℝ) |
111 | 88 | simprd 113 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍)))) |
112 | 26, 28, 13, 106 | ltadd2dd 8292 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) < ((𝐺‘𝑛) + (1 / 𝑛))) |
113 | 22, 109, 110, 111, 112 | lttrd 7996 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛))) |
114 | 108, 113 | jca 304 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) |
115 | 114 | ralrimiva 2530 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) |
116 | 115 | ralrimiva 2530 |
1
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) |