ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjmulap GIF version

Theorem conjmulap 8511
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
conjmulap (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))

Proof of Theorem conjmulap
StepHypRef Expression
1 simpll 519 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → 𝑃 ∈ ℂ)
2 simprl 521 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → 𝑄 ∈ ℂ)
3 recclap 8461 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 # 0) → (1 / 𝑃) ∈ ℂ)
43adantr 274 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (1 / 𝑃) ∈ ℂ)
51, 2, 4mul32d 7937 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = ((𝑃 · (1 / 𝑃)) · 𝑄))
6 recidap 8468 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 # 0) → (𝑃 · (1 / 𝑃)) = 1)
76oveq1d 5795 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝑃 # 0) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
87adantr 274 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
9 mulid2 7786 . . . . . . 7 (𝑄 ∈ ℂ → (1 · 𝑄) = 𝑄)
109ad2antrl 482 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (1 · 𝑄) = 𝑄)
115, 8, 103eqtrd 2177 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = 𝑄)
12 recclap 8461 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 # 0) → (1 / 𝑄) ∈ ℂ)
1312adantl 275 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (1 / 𝑄) ∈ ℂ)
141, 2, 13mulassd 7811 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = (𝑃 · (𝑄 · (1 / 𝑄))))
15 recidap 8468 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 # 0) → (𝑄 · (1 / 𝑄)) = 1)
1615oveq2d 5796 . . . . . . 7 ((𝑄 ∈ ℂ ∧ 𝑄 # 0) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
1716adantl 275 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
18 mulid1 7785 . . . . . . 7 (𝑃 ∈ ℂ → (𝑃 · 1) = 𝑃)
1918ad2antrr 480 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · 1) = 𝑃)
2014, 17, 193eqtrd 2177 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = 𝑃)
2111, 20oveq12d 5798 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))) = (𝑄 + 𝑃))
22 mulcl 7769 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 · 𝑄) ∈ ℂ)
2322ad2ant2r 501 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · 𝑄) ∈ ℂ)
2423, 4, 13adddid 7812 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))))
25 addcom 7921 . . . . 5 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2625ad2ant2r 501 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2721, 24, 263eqtr4d 2183 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (𝑃 + 𝑄))
2822mulid1d 7805 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
2928ad2ant2r 501 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
3027, 29eqeq12d 2155 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ (𝑃 + 𝑄) = (𝑃 · 𝑄)))
31 addcl 7767 . . . 4 (((1 / 𝑃) ∈ ℂ ∧ (1 / 𝑄) ∈ ℂ) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
323, 12, 31syl2an 287 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
33 mulap0 8437 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · 𝑄) # 0)
34 ax-1cn 7735 . . . 4 1 ∈ ℂ
35 mulcanap 8448 . . . 4 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3634, 35mp3an2 1304 . . 3 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3732, 23, 33, 36syl12anc 1215 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
38 eqcom 2142 . . . 4 ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ (𝑃 · 𝑄) = (𝑃 + 𝑄))
39 muleqadd 8451 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) = (𝑃 + 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4038, 39syl5bb 191 . . 3 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4140ad2ant2r 501 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4230, 37, 413bitr3d 217 1 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481   class class class wbr 3935  (class class class)co 5780  cc 7640  0cc0 7642  1c1 7643   + caddc 7645   · cmul 7647  cmin 7955   # cap 8365   / cdiv 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-mulrcl 7741  ax-addcom 7742  ax-mulcom 7743  ax-addass 7744  ax-mulass 7745  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-1rid 7749  ax-0id 7750  ax-rnegex 7751  ax-precex 7752  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758  ax-pre-mulgt0 7759  ax-pre-mulext 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-br 3936  df-opab 3996  df-id 4221  df-po 4224  df-iso 4225  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-iota 5094  df-fun 5131  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-reap 8359  df-ap 8366  df-div 8455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator