ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjmulap GIF version

Theorem conjmulap 8094
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
conjmulap (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))

Proof of Theorem conjmulap
StepHypRef Expression
1 simpll 496 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → 𝑃 ∈ ℂ)
2 simprl 498 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → 𝑄 ∈ ℂ)
3 recclap 8044 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 # 0) → (1 / 𝑃) ∈ ℂ)
43adantr 270 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (1 / 𝑃) ∈ ℂ)
51, 2, 4mul32d 7538 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = ((𝑃 · (1 / 𝑃)) · 𝑄))
6 recidap 8051 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 # 0) → (𝑃 · (1 / 𝑃)) = 1)
76oveq1d 5606 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝑃 # 0) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
87adantr 270 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
9 mulid2 7389 . . . . . . 7 (𝑄 ∈ ℂ → (1 · 𝑄) = 𝑄)
109ad2antrl 474 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (1 · 𝑄) = 𝑄)
115, 8, 103eqtrd 2119 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = 𝑄)
12 recclap 8044 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 # 0) → (1 / 𝑄) ∈ ℂ)
1312adantl 271 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (1 / 𝑄) ∈ ℂ)
141, 2, 13mulassd 7414 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = (𝑃 · (𝑄 · (1 / 𝑄))))
15 recidap 8051 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 # 0) → (𝑄 · (1 / 𝑄)) = 1)
1615oveq2d 5607 . . . . . . 7 ((𝑄 ∈ ℂ ∧ 𝑄 # 0) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
1716adantl 271 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
18 mulid1 7388 . . . . . . 7 (𝑃 ∈ ℂ → (𝑃 · 1) = 𝑃)
1918ad2antrr 472 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · 1) = 𝑃)
2014, 17, 193eqtrd 2119 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = 𝑃)
2111, 20oveq12d 5609 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))) = (𝑄 + 𝑃))
22 mulcl 7372 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 · 𝑄) ∈ ℂ)
2322ad2ant2r 493 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · 𝑄) ∈ ℂ)
2423, 4, 13adddid 7415 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))))
25 addcom 7522 . . . . 5 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2625ad2ant2r 493 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2721, 24, 263eqtr4d 2125 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (𝑃 + 𝑄))
2822mulid1d 7408 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
2928ad2ant2r 493 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
3027, 29eqeq12d 2097 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ (𝑃 + 𝑄) = (𝑃 · 𝑄)))
31 addcl 7370 . . . 4 (((1 / 𝑃) ∈ ℂ ∧ (1 / 𝑄) ∈ ℂ) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
323, 12, 31syl2an 283 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
33 mulap0 8021 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (𝑃 · 𝑄) # 0)
34 ax-1cn 7341 . . . 4 1 ∈ ℂ
35 mulcanap 8032 . . . 4 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3634, 35mp3an2 1257 . . 3 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3732, 23, 33, 36syl12anc 1168 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
38 eqcom 2085 . . . 4 ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ (𝑃 · 𝑄) = (𝑃 + 𝑄))
39 muleqadd 8035 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) = (𝑃 + 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4038, 39syl5bb 190 . . 3 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4140ad2ant2r 493 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4230, 37, 413bitr3d 216 1 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3811  (class class class)co 5591  cc 7251  0cc0 7253  1c1 7254   + caddc 7256   · cmul 7258  cmin 7556   # cap 7958   / cdiv 8037
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4084  df-po 4087  df-iso 4088  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator