| Step | Hyp | Ref
 | Expression | 
| 1 |   | opelxpi 4695 | 
. . . 4
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
〈𝐵, 𝐶〉 ∈ (ℤ ×
ℕ)) | 
| 2 | 1 | 3adant1 1017 | 
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
〈𝐵, 𝐶〉 ∈ (ℤ ×
ℕ)) | 
| 3 |   | qredeu 12265 | 
. . . 4
⊢ (𝐴 ∈ ℚ →
∃!𝑎 ∈ (ℤ
× ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) | 
| 4 | 3 | 3ad2ant1 1020 | 
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
∃!𝑎 ∈ (ℤ
× ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) | 
| 5 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑎 = 〈𝐵, 𝐶〉 → (1st ‘𝑎) = (1st
‘〈𝐵, 𝐶〉)) | 
| 6 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑎 = 〈𝐵, 𝐶〉 → (2nd ‘𝑎) = (2nd
‘〈𝐵, 𝐶〉)) | 
| 7 | 5, 6 | oveq12d 5940 | 
. . . . . 6
⊢ (𝑎 = 〈𝐵, 𝐶〉 → ((1st ‘𝑎) gcd (2nd
‘𝑎)) =
((1st ‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉))) | 
| 8 | 7 | eqeq1d 2205 | 
. . . . 5
⊢ (𝑎 = 〈𝐵, 𝐶〉 → (((1st ‘𝑎) gcd (2nd
‘𝑎)) = 1 ↔
((1st ‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = 1)) | 
| 9 | 5, 6 | oveq12d 5940 | 
. . . . . 6
⊢ (𝑎 = 〈𝐵, 𝐶〉 → ((1st ‘𝑎) / (2nd ‘𝑎)) = ((1st
‘〈𝐵, 𝐶〉) / (2nd
‘〈𝐵, 𝐶〉))) | 
| 10 | 9 | eqeq2d 2208 | 
. . . . 5
⊢ (𝑎 = 〈𝐵, 𝐶〉 → (𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)) ↔ 𝐴 = ((1st ‘〈𝐵, 𝐶〉) / (2nd ‘〈𝐵, 𝐶〉)))) | 
| 11 | 8, 10 | anbi12d 473 | 
. . . 4
⊢ (𝑎 = 〈𝐵, 𝐶〉 → ((((1st
‘𝑎) gcd
(2nd ‘𝑎))
= 1 ∧ 𝐴 =
((1st ‘𝑎)
/ (2nd ‘𝑎))) ↔ (((1st
‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = 1 ∧ 𝐴 = ((1st
‘〈𝐵, 𝐶〉) / (2nd
‘〈𝐵, 𝐶〉))))) | 
| 12 | 11 | riota2 5900 | 
. . 3
⊢
((〈𝐵, 𝐶〉 ∈ (ℤ ×
ℕ) ∧ ∃!𝑎
∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) → ((((1st
‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = 1 ∧ 𝐴 = ((1st
‘〈𝐵, 𝐶〉) / (2nd
‘〈𝐵, 𝐶〉))) ↔
(℩𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈𝐵, 𝐶〉)) | 
| 13 | 2, 4, 12 | syl2anc 411 | 
. 2
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
((((1st ‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = 1 ∧ 𝐴 = ((1st
‘〈𝐵, 𝐶〉) / (2nd
‘〈𝐵, 𝐶〉))) ↔
(℩𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈𝐵, 𝐶〉)) | 
| 14 |   | op1stg 6208 | 
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
(1st ‘〈𝐵, 𝐶〉) = 𝐵) | 
| 15 |   | op2ndg 6209 | 
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
(2nd ‘〈𝐵, 𝐶〉) = 𝐶) | 
| 16 | 14, 15 | oveq12d 5940 | 
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
((1st ‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = (𝐵 gcd 𝐶)) | 
| 17 | 16 | 3adant1 1017 | 
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
((1st ‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = (𝐵 gcd 𝐶)) | 
| 18 | 17 | eqeq1d 2205 | 
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
(((1st ‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = 1 ↔ (𝐵 gcd 𝐶) = 1)) | 
| 19 | 14 | 3adant1 1017 | 
. . . . 5
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
(1st ‘〈𝐵, 𝐶〉) = 𝐵) | 
| 20 | 15 | 3adant1 1017 | 
. . . . 5
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
(2nd ‘〈𝐵, 𝐶〉) = 𝐶) | 
| 21 | 19, 20 | oveq12d 5940 | 
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
((1st ‘〈𝐵, 𝐶〉) / (2nd ‘〈𝐵, 𝐶〉)) = (𝐵 / 𝐶)) | 
| 22 | 21 | eqeq2d 2208 | 
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 = ((1st
‘〈𝐵, 𝐶〉) / (2nd
‘〈𝐵, 𝐶〉)) ↔ 𝐴 = (𝐵 / 𝐶))) | 
| 23 | 18, 22 | anbi12d 473 | 
. 2
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
((((1st ‘〈𝐵, 𝐶〉) gcd (2nd
‘〈𝐵, 𝐶〉)) = 1 ∧ 𝐴 = ((1st
‘〈𝐵, 𝐶〉) / (2nd
‘〈𝐵, 𝐶〉))) ↔ ((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)))) | 
| 24 |   | riotacl 5892 | 
. . . . . . 7
⊢
(∃!𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))) → (℩𝑎 ∈ (ℤ ×
ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ ×
ℕ)) | 
| 25 |   | 1st2nd2 6233 | 
. . . . . . 7
⊢
((℩𝑎
∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ ×
ℕ) → (℩𝑎 ∈ (ℤ ×
ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st
‘(℩𝑎
∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd
‘(℩𝑎
∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉) | 
| 26 | 3, 24, 25 | 3syl 17 | 
. . . . . 6
⊢ (𝐴 ∈ ℚ →
(℩𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st
‘(℩𝑎
∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd
‘(℩𝑎
∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉) | 
| 27 |   | qnumval 12353 | 
. . . . . . 7
⊢ (𝐴 ∈ ℚ →
(numer‘𝐴) =
(1st ‘(℩𝑎 ∈ (ℤ ×
ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | 
| 28 |   | qdenval 12354 | 
. . . . . . 7
⊢ (𝐴 ∈ ℚ →
(denom‘𝐴) =
(2nd ‘(℩𝑎 ∈ (ℤ ×
ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | 
| 29 | 27, 28 | opeq12d 3816 | 
. . . . . 6
⊢ (𝐴 ∈ ℚ →
〈(numer‘𝐴),
(denom‘𝐴)〉 =
〈(1st ‘(℩𝑎 ∈ (ℤ ×
ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd
‘(℩𝑎
∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉) | 
| 30 | 26, 29 | eqtr4d 2232 | 
. . . . 5
⊢ (𝐴 ∈ ℚ →
(℩𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(numer‘𝐴), (denom‘𝐴)〉) | 
| 31 | 30 | eqeq1d 2205 | 
. . . 4
⊢ (𝐴 ∈ ℚ →
((℩𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈𝐵, 𝐶〉 ↔ 〈(numer‘𝐴), (denom‘𝐴)〉 = 〈𝐵, 𝐶〉)) | 
| 32 | 31 | 3ad2ant1 1020 | 
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
((℩𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈𝐵, 𝐶〉 ↔ 〈(numer‘𝐴), (denom‘𝐴)〉 = 〈𝐵, 𝐶〉)) | 
| 33 |   | qnumcl 12356 | 
. . . . 5
⊢ (𝐴 ∈ ℚ →
(numer‘𝐴) ∈
ℤ) | 
| 34 |   | qdencl 12357 | 
. . . . 5
⊢ (𝐴 ∈ ℚ →
(denom‘𝐴) ∈
ℕ) | 
| 35 |   | opthg 4271 | 
. . . . 5
⊢
(((numer‘𝐴)
∈ ℤ ∧ (denom‘𝐴) ∈ ℕ) →
(〈(numer‘𝐴),
(denom‘𝐴)〉 =
〈𝐵, 𝐶〉 ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | 
| 36 | 33, 34, 35 | syl2anc 411 | 
. . . 4
⊢ (𝐴 ∈ ℚ →
(〈(numer‘𝐴),
(denom‘𝐴)〉 =
〈𝐵, 𝐶〉 ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | 
| 37 | 36 | 3ad2ant1 1020 | 
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
(〈(numer‘𝐴),
(denom‘𝐴)〉 =
〈𝐵, 𝐶〉 ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | 
| 38 | 32, 37 | bitrd 188 | 
. 2
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) →
((℩𝑎 ∈
(ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈𝐵, 𝐶〉 ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | 
| 39 | 13, 23, 38 | 3bitr3d 218 | 
1
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) |