ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumdenbi GIF version

Theorem qnumdenbi 12722
Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdenbi ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))

Proof of Theorem qnumdenbi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 opelxpi 4751 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ⟨𝐵, 𝐶⟩ ∈ (ℤ × ℕ))
213adant1 1039 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ⟨𝐵, 𝐶⟩ ∈ (ℤ × ℕ))
3 qredeu 12627 . . . 4 (𝐴 ∈ ℚ → ∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))
433ad2ant1 1042 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))
5 fveq2 5629 . . . . . . 7 (𝑎 = ⟨𝐵, 𝐶⟩ → (1st𝑎) = (1st ‘⟨𝐵, 𝐶⟩))
6 fveq2 5629 . . . . . . 7 (𝑎 = ⟨𝐵, 𝐶⟩ → (2nd𝑎) = (2nd ‘⟨𝐵, 𝐶⟩))
75, 6oveq12d 6025 . . . . . 6 (𝑎 = ⟨𝐵, 𝐶⟩ → ((1st𝑎) gcd (2nd𝑎)) = ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)))
87eqeq1d 2238 . . . . 5 (𝑎 = ⟨𝐵, 𝐶⟩ → (((1st𝑎) gcd (2nd𝑎)) = 1 ↔ ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1))
95, 6oveq12d 6025 . . . . . 6 (𝑎 = ⟨𝐵, 𝐶⟩ → ((1st𝑎) / (2nd𝑎)) = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)))
109eqeq2d 2241 . . . . 5 (𝑎 = ⟨𝐵, 𝐶⟩ → (𝐴 = ((1st𝑎) / (2nd𝑎)) ↔ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))))
118, 10anbi12d 473 . . . 4 (𝑎 = ⟨𝐵, 𝐶⟩ → ((((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))) ↔ (((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)))))
1211riota2 5984 . . 3 ((⟨𝐵, 𝐶⟩ ∈ (ℤ × ℕ) ∧ ∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) → ((((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))) ↔ (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩))
132, 4, 12syl2anc 411 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))) ↔ (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩))
14 op1stg 6302 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (1st ‘⟨𝐵, 𝐶⟩) = 𝐵)
15 op2ndg 6303 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (2nd ‘⟨𝐵, 𝐶⟩) = 𝐶)
1614, 15oveq12d 6025 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = (𝐵 gcd 𝐶))
17163adant1 1039 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = (𝐵 gcd 𝐶))
1817eqeq1d 2238 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ↔ (𝐵 gcd 𝐶) = 1))
19143adant1 1039 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (1st ‘⟨𝐵, 𝐶⟩) = 𝐵)
20153adant1 1039 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (2nd ‘⟨𝐵, 𝐶⟩) = 𝐶)
2119, 20oveq12d 6025 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)) = (𝐵 / 𝐶))
2221eqeq2d 2241 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩)) ↔ 𝐴 = (𝐵 / 𝐶)))
2318, 22anbi12d 473 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((((1st ‘⟨𝐵, 𝐶⟩) gcd (2nd ‘⟨𝐵, 𝐶⟩)) = 1 ∧ 𝐴 = ((1st ‘⟨𝐵, 𝐶⟩) / (2nd ‘⟨𝐵, 𝐶⟩))) ↔ ((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶))))
24 riotacl 5976 . . . . . . 7 (∃!𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))) → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) ∈ (ℤ × ℕ))
25 1st2nd2 6327 . . . . . . 7 ((𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) ∈ (ℤ × ℕ) → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨(1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))), (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))))⟩)
263, 24, 253syl 17 . . . . . 6 (𝐴 ∈ ℚ → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨(1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))), (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))))⟩)
27 qnumval 12715 . . . . . . 7 (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))))
28 qdenval 12716 . . . . . . 7 (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))))
2927, 28opeq12d 3865 . . . . . 6 (𝐴 ∈ ℚ → ⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨(1st ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎))))), (2nd ‘(𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))))⟩)
3026, 29eqtr4d 2265 . . . . 5 (𝐴 ∈ ℚ → (𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨(numer‘𝐴), (denom‘𝐴)⟩)
3130eqeq1d 2238 . . . 4 (𝐴 ∈ ℚ → ((𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩ ↔ ⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩))
32313ad2ant1 1042 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩ ↔ ⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩))
33 qnumcl 12718 . . . . 5 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
34 qdencl 12719 . . . . 5 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
35 opthg 4324 . . . . 5 (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ) → (⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
3633, 34, 35syl2anc 411 . . . 4 (𝐴 ∈ ℚ → (⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
37363ad2ant1 1042 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (⟨(numer‘𝐴), (denom‘𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
3832, 37bitrd 188 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 ∈ (ℤ × ℕ)(((1st𝑎) gcd (2nd𝑎)) = 1 ∧ 𝐴 = ((1st𝑎) / (2nd𝑎)))) = ⟨𝐵, 𝐶⟩ ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
3913, 23, 383bitr3d 218 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  ∃!wreu 2510  cop 3669   × cxp 4717  cfv 5318  crio 5959  (class class class)co 6007  1st c1st 6290  2nd c2nd 6291  1c1 8008   / cdiv 8827  cn 9118  cz 9454  cq 9822   gcd cgcd 12482  numercnumer 12711  denomcdenom 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-numer 12713  df-denom 12714
This theorem is referenced by:  qnumdencoprm  12723  qeqnumdivden  12724  divnumden  12726  numdensq  12732
  Copyright terms: Public domain W3C validator