Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2201 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2199 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: difinfsn 7065 nnnninfeq 7092 prarloclemlo 7435 recexgt0sr 7714 xp1d2m1eqxm1d2 9109 qnegmod 10304 modqeqmodmin 10329 faclbnd2 10655 cjmulval 10830 fsumsplit 11348 fzosump1 11358 isumclim3 11364 bcxmas 11430 trireciplem 11441 geo2sum 11455 geo2lim 11457 geoisum1c 11461 cvgratnnlemseq 11467 mertenslemi1 11476 fprodsplitdc 11537 eftlub 11631 addsin 11683 subsin 11684 subcos 11688 qredeu 12029 nn0sqrtelqelz 12138 strslfv2d 12436 dvexp 13325 tangtx 13409 logsqrt 13493 2sqlem8 13609 |
Copyright terms: Public domain | W3C validator |