| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2240 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2238 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: difinfsn 7201 nnnninfeq 7229 prarloclemlo 7606 recexgt0sr 7885 xp1d2m1eqxm1d2 9289 qnegmod 10512 modqeqmodmin 10537 faclbnd2 10885 cjmulval 11170 fsumsplit 11689 fzosump1 11699 isumclim3 11705 bcxmas 11771 trireciplem 11782 geo2sum 11796 geo2lim 11798 geoisum1c 11802 cvgratnnlemseq 11808 mertenslemi1 11817 fprodsplitdc 11878 eftlub 11972 addsin 12024 subsin 12025 subcos 12029 qredeu 12390 nn0sqrtelqelz 12499 4sqlem15 12699 strslfv2d 12846 mulgaddcomlem 13452 conjghm 13583 dvexp 15154 tangtx 15281 logsqrt 15366 mpodvdsmulf1o 15433 lgsquad2lem1 15529 2sqlem8 15571 |
| Copyright terms: Public domain | W3C validator |