| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2240 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2238 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: difinfsn 7201 nnnninfeq 7229 prarloclemlo 7606 recexgt0sr 7885 xp1d2m1eqxm1d2 9289 qnegmod 10512 modqeqmodmin 10537 faclbnd2 10885 cjmulval 11141 fsumsplit 11660 fzosump1 11670 isumclim3 11676 bcxmas 11742 trireciplem 11753 geo2sum 11767 geo2lim 11769 geoisum1c 11773 cvgratnnlemseq 11779 mertenslemi1 11788 fprodsplitdc 11849 eftlub 11943 addsin 11995 subsin 11996 subcos 12000 qredeu 12361 nn0sqrtelqelz 12470 4sqlem15 12670 strslfv2d 12817 mulgaddcomlem 13423 conjghm 13554 dvexp 15125 tangtx 15252 logsqrt 15337 mpodvdsmulf1o 15404 lgsquad2lem1 15500 2sqlem8 15542 |
| Copyright terms: Public domain | W3C validator |