Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2206 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2204 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: difinfsn 7077 nnnninfeq 7104 prarloclemlo 7456 recexgt0sr 7735 xp1d2m1eqxm1d2 9130 qnegmod 10325 modqeqmodmin 10350 faclbnd2 10676 cjmulval 10852 fsumsplit 11370 fzosump1 11380 isumclim3 11386 bcxmas 11452 trireciplem 11463 geo2sum 11477 geo2lim 11479 geoisum1c 11483 cvgratnnlemseq 11489 mertenslemi1 11498 fprodsplitdc 11559 eftlub 11653 addsin 11705 subsin 11706 subcos 11710 qredeu 12051 nn0sqrtelqelz 12160 strslfv2d 12458 dvexp 13469 tangtx 13553 logsqrt 13637 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |