| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2265 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2263 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: difinfsn 7263 nnnninfeq 7291 prarloclemlo 7677 recexgt0sr 7956 xp1d2m1eqxm1d2 9360 qnegmod 10586 modqeqmodmin 10611 faclbnd2 10959 cats1un 11248 cjmulval 11394 fsumsplit 11913 fzosump1 11923 isumclim3 11929 bcxmas 11995 trireciplem 12006 geo2sum 12020 geo2lim 12022 geoisum1c 12026 cvgratnnlemseq 12032 mertenslemi1 12041 fprodsplitdc 12102 eftlub 12196 addsin 12248 subsin 12249 subcos 12253 qredeu 12614 nn0sqrtelqelz 12723 4sqlem15 12923 strslfv2d 13070 mulgaddcomlem 13677 conjghm 13808 dvexp 15379 tangtx 15506 logsqrt 15591 mpodvdsmulf1o 15658 lgsquad2lem1 15754 2sqlem8 15796 |
| Copyright terms: Public domain | W3C validator |