| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2232 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2230 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: difinfsn 7175 nnnninfeq 7203 prarloclemlo 7580 recexgt0sr 7859 xp1d2m1eqxm1d2 9263 qnegmod 10480 modqeqmodmin 10505 faclbnd2 10853 cjmulval 11072 fsumsplit 11591 fzosump1 11601 isumclim3 11607 bcxmas 11673 trireciplem 11684 geo2sum 11698 geo2lim 11700 geoisum1c 11704 cvgratnnlemseq 11710 mertenslemi1 11719 fprodsplitdc 11780 eftlub 11874 addsin 11926 subsin 11927 subcos 11931 qredeu 12292 nn0sqrtelqelz 12401 4sqlem15 12601 strslfv2d 12748 mulgaddcomlem 13353 conjghm 13484 dvexp 15055 tangtx 15182 logsqrt 15267 mpodvdsmulf1o 15334 lgsquad2lem1 15430 2sqlem8 15472 |
| Copyright terms: Public domain | W3C validator |