| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2242 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2240 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: difinfsn 7217 nnnninfeq 7245 prarloclemlo 7627 recexgt0sr 7906 xp1d2m1eqxm1d2 9310 qnegmod 10536 modqeqmodmin 10561 faclbnd2 10909 cats1un 11197 cjmulval 11274 fsumsplit 11793 fzosump1 11803 isumclim3 11809 bcxmas 11875 trireciplem 11886 geo2sum 11900 geo2lim 11902 geoisum1c 11906 cvgratnnlemseq 11912 mertenslemi1 11921 fprodsplitdc 11982 eftlub 12076 addsin 12128 subsin 12129 subcos 12133 qredeu 12494 nn0sqrtelqelz 12603 4sqlem15 12803 strslfv2d 12950 mulgaddcomlem 13556 conjghm 13687 dvexp 15258 tangtx 15385 logsqrt 15470 mpodvdsmulf1o 15537 lgsquad2lem1 15633 2sqlem8 15675 |
| Copyright terms: Public domain | W3C validator |