![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2229 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2227 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: difinfsn 7159 nnnninfeq 7187 prarloclemlo 7554 recexgt0sr 7833 xp1d2m1eqxm1d2 9235 qnegmod 10440 modqeqmodmin 10465 faclbnd2 10813 cjmulval 11032 fsumsplit 11550 fzosump1 11560 isumclim3 11566 bcxmas 11632 trireciplem 11643 geo2sum 11657 geo2lim 11659 geoisum1c 11663 cvgratnnlemseq 11669 mertenslemi1 11678 fprodsplitdc 11739 eftlub 11833 addsin 11885 subsin 11886 subcos 11890 qredeu 12235 nn0sqrtelqelz 12344 4sqlem15 12543 strslfv2d 12661 mulgaddcomlem 13215 conjghm 13346 dvexp 14860 tangtx 14973 logsqrt 15057 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |