![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2rd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2225 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2223 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 |
This theorem is referenced by: difinfsn 7128 nnnninfeq 7155 prarloclemlo 7522 recexgt0sr 7801 xp1d2m1eqxm1d2 9200 qnegmod 10399 modqeqmodmin 10424 faclbnd2 10753 cjmulval 10928 fsumsplit 11446 fzosump1 11456 isumclim3 11462 bcxmas 11528 trireciplem 11539 geo2sum 11553 geo2lim 11555 geoisum1c 11559 cvgratnnlemseq 11565 mertenslemi1 11574 fprodsplitdc 11635 eftlub 11729 addsin 11781 subsin 11782 subcos 11786 qredeu 12128 nn0sqrtelqelz 12237 4sqlem15 12436 strslfv2d 12554 mulgaddcomlem 13082 conjghm 13212 dvexp 14627 tangtx 14711 logsqrt 14795 2sqlem8 14923 |
Copyright terms: Public domain | W3C validator |