Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2206 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtrd 2203 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: fmptapd 5687 rdgisucinc 6364 ctm 7086 mulidnq 7351 ltrnqg 7382 recexprlem1ssl 7595 recexprlem1ssu 7596 ltmprr 7604 mulcmpblnrlemg 7702 caucvgsrlemoffcau 7760 negsub 8167 neg2sub 8179 divmuleqap 8634 divneg2ap 8653 qapne 9598 seqvalcd 10415 binom2 10587 bcpasc 10700 crim 10822 remullem 10835 max0addsup 11183 summodclem2a 11344 isum1p 11455 geo2sum 11477 cvgratz 11495 efi4p 11680 tanaddap 11702 addcos 11709 cos2tsin 11714 demoivreALT 11736 omeo 11857 sqgcd 11984 eulerthlemth 12186 pythagtriplem16 12233 fldivp1 12300 pockthlem 12308 4sqlem10 12339 grpinvid2 12755 txrest 13070 limccnpcntop 13438 dvrecap 13471 cosq34lt1 13565 |
Copyright terms: Public domain | W3C validator |