| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2232 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtrd 2229 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fmptapd 5756 rdgisucinc 6452 ctm 7184 mulidnq 7475 ltrnqg 7506 recexprlem1ssl 7719 recexprlem1ssu 7720 ltmprr 7728 mulcmpblnrlemg 7826 caucvgsrlemoffcau 7884 negsub 8293 neg2sub 8305 divmuleqap 8763 divneg2ap 8782 qapne 9732 seqvalcd 10572 binom2 10762 bcpasc 10877 crim 11042 remullem 11055 max0addsup 11403 summodclem2a 11565 isum1p 11676 geo2sum 11698 cvgratz 11716 efi4p 11901 tanaddap 11923 addcos 11930 cos2tsin 11935 demoivreALT 11958 omeo 12082 sqgcd 12223 eulerthlemth 12427 pythagtriplem16 12475 fldivp1 12544 pockthlem 12552 4sqlem10 12583 gsumval2 13101 grpinvid2 13257 imasgrp2 13318 mulgaddcomlem 13353 mulgmodid 13369 ablsubsub 13526 ablsubsub4 13527 gsumfzsnfd 13553 opprunitd 13744 lmodfopne 13960 mpl0fi 14336 mplnegfi 14339 txrest 14620 limccnpcntop 15019 dvrecap 15057 dvply1 15109 cosq34lt1 15194 wilthlem1 15324 mersenne 15341 lgseisenlem1 15419 lgsquadlem1 15426 lgsquadlem2 15427 lgsquadlem3 15428 lgsquad2lem1 15430 2lgslem1 15440 |
| Copyright terms: Public domain | W3C validator |