| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2265 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: fmptapd 5829 rdgisucinc 6529 ctm 7272 mulidnq 7572 ltrnqg 7603 recexprlem1ssl 7816 recexprlem1ssu 7817 ltmprr 7825 mulcmpblnrlemg 7923 caucvgsrlemoffcau 7981 negsub 8390 neg2sub 8402 divmuleqap 8860 divneg2ap 8879 qapne 9830 seqvalcd 10678 binom2 10868 bcpasc 10983 cats2catd 11296 crim 11364 remullem 11377 max0addsup 11725 summodclem2a 11887 isum1p 11998 geo2sum 12020 cvgratz 12038 efi4p 12223 tanaddap 12245 addcos 12252 cos2tsin 12257 demoivreALT 12280 omeo 12404 sqgcd 12545 eulerthlemth 12749 pythagtriplem16 12797 fldivp1 12866 pockthlem 12874 4sqlem10 12905 gsumval2 13425 grpinvid2 13581 imasgrp2 13642 mulgaddcomlem 13677 mulgmodid 13693 ablsubsub 13850 ablsubsub4 13851 gsumfzsnfd 13877 opprunitd 14068 lmodfopne 14284 mpl0fi 14660 mplnegfi 14663 txrest 14944 limccnpcntop 15343 dvrecap 15381 dvply1 15433 cosq34lt1 15518 wilthlem1 15648 mersenne 15665 lgseisenlem1 15743 lgsquadlem1 15750 lgsquadlem2 15751 lgsquadlem3 15752 lgsquad2lem1 15754 2lgslem1 15764 |
| Copyright terms: Public domain | W3C validator |