Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2201 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtrd 2198 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: fmptapd 5676 rdgisucinc 6353 ctm 7074 mulidnq 7330 ltrnqg 7361 recexprlem1ssl 7574 recexprlem1ssu 7575 ltmprr 7583 mulcmpblnrlemg 7681 caucvgsrlemoffcau 7739 negsub 8146 neg2sub 8158 divmuleqap 8613 divneg2ap 8632 qapne 9577 seqvalcd 10394 binom2 10566 bcpasc 10679 crim 10800 remullem 10813 max0addsup 11161 summodclem2a 11322 isum1p 11433 geo2sum 11455 cvgratz 11473 efi4p 11658 tanaddap 11680 addcos 11687 cos2tsin 11692 demoivreALT 11714 omeo 11835 sqgcd 11962 eulerthlemth 12164 pythagtriplem16 12211 fldivp1 12278 pockthlem 12286 4sqlem10 12317 txrest 12916 limccnpcntop 13284 dvrecap 13317 cosq34lt1 13411 |
Copyright terms: Public domain | W3C validator |