Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2206 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtrd 2203 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: fmptapd 5684 rdgisucinc 6361 ctm 7082 mulidnq 7338 ltrnqg 7369 recexprlem1ssl 7582 recexprlem1ssu 7583 ltmprr 7591 mulcmpblnrlemg 7689 caucvgsrlemoffcau 7747 negsub 8154 neg2sub 8166 divmuleqap 8621 divneg2ap 8640 qapne 9585 seqvalcd 10402 binom2 10574 bcpasc 10687 crim 10809 remullem 10822 max0addsup 11170 summodclem2a 11331 isum1p 11442 geo2sum 11464 cvgratz 11482 efi4p 11667 tanaddap 11689 addcos 11696 cos2tsin 11701 demoivreALT 11723 omeo 11844 sqgcd 11971 eulerthlemth 12173 pythagtriplem16 12220 fldivp1 12287 pockthlem 12295 4sqlem10 12326 txrest 13029 limccnpcntop 13397 dvrecap 13430 cosq34lt1 13524 |
Copyright terms: Public domain | W3C validator |