![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2229 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtrd 2226 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: fmptapd 5749 rdgisucinc 6438 ctm 7168 mulidnq 7449 ltrnqg 7480 recexprlem1ssl 7693 recexprlem1ssu 7694 ltmprr 7702 mulcmpblnrlemg 7800 caucvgsrlemoffcau 7858 negsub 8267 neg2sub 8279 divmuleqap 8736 divneg2ap 8755 qapne 9704 seqvalcd 10532 binom2 10722 bcpasc 10837 crim 11002 remullem 11015 max0addsup 11363 summodclem2a 11524 isum1p 11635 geo2sum 11657 cvgratz 11675 efi4p 11860 tanaddap 11882 addcos 11889 cos2tsin 11894 demoivreALT 11917 omeo 12039 sqgcd 12166 eulerthlemth 12370 pythagtriplem16 12417 fldivp1 12486 pockthlem 12494 4sqlem10 12525 gsumval2 12980 grpinvid2 13125 imasgrp2 13180 mulgaddcomlem 13215 mulgmodid 13231 ablsubsub 13388 ablsubsub4 13389 gsumfzsnfd 13415 opprunitd 13606 lmodfopne 13822 txrest 14444 limccnpcntop 14829 dvrecap 14862 cosq34lt1 14985 wilthlem1 15112 lgseisenlem1 15186 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |