![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 1, 2 | eqtr4d 2229 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtrd 2226 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: fmptapd 5750 rdgisucinc 6440 ctm 7170 mulidnq 7451 ltrnqg 7482 recexprlem1ssl 7695 recexprlem1ssu 7696 ltmprr 7704 mulcmpblnrlemg 7802 caucvgsrlemoffcau 7860 negsub 8269 neg2sub 8281 divmuleqap 8738 divneg2ap 8757 qapne 9707 seqvalcd 10535 binom2 10725 bcpasc 10840 crim 11005 remullem 11018 max0addsup 11366 summodclem2a 11527 isum1p 11638 geo2sum 11660 cvgratz 11678 efi4p 11863 tanaddap 11885 addcos 11892 cos2tsin 11897 demoivreALT 11920 omeo 12042 sqgcd 12169 eulerthlemth 12373 pythagtriplem16 12420 fldivp1 12489 pockthlem 12497 4sqlem10 12528 gsumval2 12983 grpinvid2 13128 imasgrp2 13183 mulgaddcomlem 13218 mulgmodid 13234 ablsubsub 13391 ablsubsub4 13392 gsumfzsnfd 13418 opprunitd 13609 lmodfopne 13825 txrest 14455 limccnpcntop 14854 dvrecap 14892 dvply1 14943 cosq34lt1 15026 wilthlem1 15153 lgseisenlem1 15227 lgsquadlem1 15234 lgsquadlem2 15235 lgsquadlem3 15236 lgsquad2lem1 15238 2lgslem1 15248 |
Copyright terms: Public domain | W3C validator |