| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr2d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| 3eqtr2d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr2d | ⊢ (𝜑 → 𝐴 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 1, 2 | eqtr4d 2242 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtr2d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtrd 2239 | 1 ⊢ (𝜑 → 𝐴 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: fmptapd 5787 rdgisucinc 6483 ctm 7225 mulidnq 7517 ltrnqg 7548 recexprlem1ssl 7761 recexprlem1ssu 7762 ltmprr 7770 mulcmpblnrlemg 7868 caucvgsrlemoffcau 7926 negsub 8335 neg2sub 8347 divmuleqap 8805 divneg2ap 8824 qapne 9775 seqvalcd 10623 binom2 10813 bcpasc 10928 crim 11239 remullem 11252 max0addsup 11600 summodclem2a 11762 isum1p 11873 geo2sum 11895 cvgratz 11913 efi4p 12098 tanaddap 12120 addcos 12127 cos2tsin 12132 demoivreALT 12155 omeo 12279 sqgcd 12420 eulerthlemth 12624 pythagtriplem16 12672 fldivp1 12741 pockthlem 12749 4sqlem10 12780 gsumval2 13299 grpinvid2 13455 imasgrp2 13516 mulgaddcomlem 13551 mulgmodid 13567 ablsubsub 13724 ablsubsub4 13725 gsumfzsnfd 13751 opprunitd 13942 lmodfopne 14158 mpl0fi 14534 mplnegfi 14537 txrest 14818 limccnpcntop 15217 dvrecap 15255 dvply1 15307 cosq34lt1 15392 wilthlem1 15522 mersenne 15539 lgseisenlem1 15617 lgsquadlem1 15624 lgsquadlem2 15625 lgsquadlem3 15626 lgsquad2lem1 15628 2lgslem1 15638 |
| Copyright terms: Public domain | W3C validator |