ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2sum GIF version

Theorem geo2sum 11506
Description: The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geo2sum ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem geo2sum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9269 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℤ)
2 nnz 9261 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 276 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℤ)
4 simplr 528 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
5 2nn 9069 . . . . . 6 2 ∈ ℕ
6 elfznn 10040 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
76adantl 277 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
87nnnn0d 9218 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
9 nnexpcl 10519 . . . . . 6 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
105, 8, 9sylancr 414 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℕ)
1110nncnd 8922 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℂ)
1210nnap0d 8954 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) # 0)
134, 11, 12divclapd 8736 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴 / (2↑𝑘)) ∈ ℂ)
14 oveq2 5877 . . . 4 (𝑘 = (𝑗 + 1) → (2↑𝑘) = (2↑(𝑗 + 1)))
1514oveq2d 5885 . . 3 (𝑘 = (𝑗 + 1) → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑(𝑗 + 1))))
161, 1, 3, 13, 15fsumshftm 11437 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))))
17 1m1e0 8977 . . . . 5 (1 − 1) = 0
1817oveq1i 5879 . . . 4 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1918sumeq1i 11355 . . 3 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1)))
20 halfcn 9122 . . . . . . . . . 10 (1 / 2) ∈ ℂ
21 elfznn0 10100 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
2221adantl 277 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
23 expcl 10524 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
2420, 22, 23sylancr 414 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑𝑗) ∈ ℂ)
25 2cnd 8981 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ∈ ℂ)
26 2ap0 9001 . . . . . . . . . 10 2 # 0
2726a1i 9 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 # 0)
2824, 25, 27divrecapd 8739 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) / 2) = (((1 / 2)↑𝑗) · (1 / 2)))
29 expp1 10513 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
3020, 22, 29sylancr 414 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
31 elfzelz 10011 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ)
3231peano2zd 9367 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ)
3332adantl 277 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℤ)
3425, 27, 33exprecapd 10647 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (1 / (2↑(𝑗 + 1))))
3528, 30, 343eqtr2rd 2217 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (1 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) / 2))
3635oveq2d 5885 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 · (1 / (2↑(𝑗 + 1)))) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
37 simplr 528 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
38 peano2nn0 9205 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3922, 38syl 14 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
40 nnexpcl 10519 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
415, 39, 40sylancr 414 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℕ)
4241nncnd 8922 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℂ)
4341nnap0d 8954 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) # 0)
4437, 42, 43divrecapd 8739 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (𝐴 · (1 / (2↑(𝑗 + 1)))))
4524, 37, 25, 27div12apd 8773 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
4636, 44, 453eqtr4d 2220 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) · (𝐴 / 2)))
4746sumeq2dv 11360 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
48 0zd 9254 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 0 ∈ ℤ)
493, 1zsubcld 9369 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝑁 − 1) ∈ ℤ)
5048, 49fzfigd 10417 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
51 halfcl 9134 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
5251adantl 277 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) ∈ ℂ)
5350, 52, 24fsummulc1 11441 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
5447, 53eqtr4d 2213 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
5519, 54eqtrid 2222 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
56 2cnd 8981 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ∈ ℂ)
5726a1i 9 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 # 0)
5856, 57, 3exprecapd 10647 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 / 2)↑𝑁) = (1 / (2↑𝑁)))
5958oveq2d 5885 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − ((1 / 2)↑𝑁)) = (1 − (1 / (2↑𝑁))))
60 1mhlfehlf 9126 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
6160a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / 2)) = (1 / 2))
6259, 61oveq12d 5887 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) = ((1 − (1 / (2↑𝑁))) / (1 / 2)))
63 simpr 110 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
6463, 56, 57divrecap2d 8740 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) = ((1 / 2) · 𝐴))
6562, 64oveq12d 5887 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
66 ax-1cn 7895 . . . . . . 7 1 ∈ ℂ
67 nnnn0 9172 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6867adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℕ0)
69 nnexpcl 10519 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
705, 68, 69sylancr 414 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℕ)
7170nnrecred 8955 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℝ)
7271recnd 7976 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℂ)
73 subcl 8146 . . . . . . 7 ((1 ∈ ℂ ∧ (1 / (2↑𝑁)) ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7466, 72, 73sylancr 414 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7520a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) ∈ ℂ)
7656, 57recap0d 8728 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 0)
7774, 75, 76divclapd 8736 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) / (1 / 2)) ∈ ℂ)
7877, 75, 63mulassd 7971 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
7974, 75, 76divcanap1d 8737 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) = (1 − (1 / (2↑𝑁))))
8079oveq1d 5884 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = ((1 − (1 / (2↑𝑁))) · 𝐴))
8165, 78, 803eqtr2d 2216 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = ((1 − (1 / (2↑𝑁))) · 𝐴))
82 halfre 9121 . . . . . . 7 (1 / 2) ∈ ℝ
83 1re 7947 . . . . . . 7 1 ∈ ℝ
84 halflt1 9125 . . . . . . 7 (1 / 2) < 1
8582, 83, 84ltapii 8582 . . . . . 6 (1 / 2) # 1
8685a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 1)
8775, 86, 68geoserap 11499 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) = ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))))
8887oveq1d 5884 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)))
89 mulid2 7946 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
9089adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
9190eqcomd 2183 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 = (1 · 𝐴))
9270nncnd 8922 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℂ)
9370nnap0d 8954 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) # 0)
9463, 92, 93divrecap2d 8740 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / (2↑𝑁)) = ((1 / (2↑𝑁)) · 𝐴))
9591, 94oveq12d 5887 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9666a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
9796, 72, 63subdird 8362 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) · 𝐴) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9895, 97eqtr4d 2213 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 − (1 / (2↑𝑁))) · 𝐴))
9981, 88, 983eqtr4d 2220 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 − (𝐴 / (2↑𝑁))))
10016, 55, 993eqtrd 2214 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4000  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cmin 8118   # cap 8528   / cdiv 8618  cn 8908  2c2 8959  0cn0 9165  cz 9242  ...cfz 9995  cexp 10505  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  geo2lim  11508  trilpolemlt1  14445
  Copyright terms: Public domain W3C validator