ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2sum GIF version

Theorem geo2sum 10895
Description: The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geo2sum ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem geo2sum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 8767 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℤ)
2 nnz 8759 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 270 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℤ)
4 simplr 497 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
5 2nn 8567 . . . . . 6 2 ∈ ℕ
6 elfznn 9458 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
76adantl 271 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
87nnnn0d 8716 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
9 nnexpcl 9956 . . . . . 6 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
105, 8, 9sylancr 405 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℕ)
1110nncnd 8426 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℂ)
1210nnap0d 8458 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) # 0)
134, 11, 12divclapd 8247 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴 / (2↑𝑘)) ∈ ℂ)
14 oveq2 5652 . . . 4 (𝑘 = (𝑗 + 1) → (2↑𝑘) = (2↑(𝑗 + 1)))
1514oveq2d 5660 . . 3 (𝑘 = (𝑗 + 1) → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑(𝑗 + 1))))
161, 1, 3, 13, 15fsumshftm 10826 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))))
17 1m1e0 8481 . . . . 5 (1 − 1) = 0
1817oveq1i 5654 . . . 4 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1918sumeq1i 10739 . . 3 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1)))
20 halfcn 8620 . . . . . . . . . 10 (1 / 2) ∈ ℂ
21 elfznn0 9516 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
2221adantl 271 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
23 expcl 9961 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
2420, 22, 23sylancr 405 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑𝑗) ∈ ℂ)
25 2cnd 8485 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ∈ ℂ)
26 2ap0 8505 . . . . . . . . . 10 2 # 0
2726a1i 9 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 # 0)
2824, 25, 27divrecapd 8250 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) / 2) = (((1 / 2)↑𝑗) · (1 / 2)))
29 expp1 9950 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
3020, 22, 29sylancr 405 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
31 elfzelz 9430 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ)
3231peano2zd 8861 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ)
3332adantl 271 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℤ)
3425, 27, 33exprecapd 10082 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (1 / (2↑(𝑗 + 1))))
3528, 30, 343eqtr2rd 2127 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (1 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) / 2))
3635oveq2d 5660 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 · (1 / (2↑(𝑗 + 1)))) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
37 simplr 497 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
38 peano2nn0 8703 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3922, 38syl 14 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
40 nnexpcl 9956 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
415, 39, 40sylancr 405 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℕ)
4241nncnd 8426 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℂ)
4341nnap0d 8458 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) # 0)
4437, 42, 43divrecapd 8250 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (𝐴 · (1 / (2↑(𝑗 + 1)))))
4524, 37, 25, 27div12apd 8284 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
4636, 44, 453eqtr4d 2130 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) · (𝐴 / 2)))
4746sumeq2dv 10744 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
48 0zd 8752 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 0 ∈ ℤ)
493, 1zsubcld 8863 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝑁 − 1) ∈ ℤ)
5048, 49fzfigd 9826 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
51 halfcl 8632 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
5251adantl 271 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) ∈ ℂ)
5350, 52, 24fsummulc1 10830 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
5447, 53eqtr4d 2123 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
5519, 54syl5eq 2132 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
56 2cnd 8485 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ∈ ℂ)
5726a1i 9 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 # 0)
5856, 57, 3exprecapd 10082 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 / 2)↑𝑁) = (1 / (2↑𝑁)))
5958oveq2d 5660 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − ((1 / 2)↑𝑁)) = (1 − (1 / (2↑𝑁))))
60 1mhlfehlf 8624 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
6160a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / 2)) = (1 / 2))
6259, 61oveq12d 5662 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) = ((1 − (1 / (2↑𝑁))) / (1 / 2)))
63 simpr 108 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
6463, 56, 57divrecap2d 8251 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) = ((1 / 2) · 𝐴))
6562, 64oveq12d 5662 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
66 ax-1cn 7428 . . . . . . 7 1 ∈ ℂ
67 nnnn0 8670 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6867adantr 270 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℕ0)
69 nnexpcl 9956 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
705, 68, 69sylancr 405 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℕ)
7170nnrecred 8459 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℝ)
7271recnd 7506 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℂ)
73 subcl 7671 . . . . . . 7 ((1 ∈ ℂ ∧ (1 / (2↑𝑁)) ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7466, 72, 73sylancr 405 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7520a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) ∈ ℂ)
7656, 57recap0d 8239 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 0)
7774, 75, 76divclapd 8247 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) / (1 / 2)) ∈ ℂ)
7877, 75, 63mulassd 7501 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
7974, 75, 76divcanap1d 8248 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) = (1 − (1 / (2↑𝑁))))
8079oveq1d 5659 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = ((1 − (1 / (2↑𝑁))) · 𝐴))
8165, 78, 803eqtr2d 2126 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = ((1 − (1 / (2↑𝑁))) · 𝐴))
82 halfre 8619 . . . . . . 7 (1 / 2) ∈ ℝ
83 1re 7477 . . . . . . 7 1 ∈ ℝ
84 halflt1 8623 . . . . . . 7 (1 / 2) < 1
8582, 83, 84ltapii 8100 . . . . . 6 (1 / 2) # 1
8685a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 1)
8775, 86, 68geoserap 10888 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) = ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))))
8887oveq1d 5659 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)))
89 mulid2 7476 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
9089adantl 271 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
9190eqcomd 2093 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 = (1 · 𝐴))
9270nncnd 8426 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℂ)
9370nnap0d 8458 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) # 0)
9463, 92, 93divrecap2d 8251 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / (2↑𝑁)) = ((1 / (2↑𝑁)) · 𝐴))
9591, 94oveq12d 5662 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9666a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
9796, 72, 63subdird 7883 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) · 𝐴) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9895, 97eqtr4d 2123 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 − (1 / (2↑𝑁))) · 𝐴))
9981, 88, 983eqtr4d 2130 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 − (𝐴 / (2↑𝑁))))
10016, 55, 993eqtrd 2124 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438   class class class wbr 3843  (class class class)co 5644  cc 7338  0cc0 7340  1c1 7341   + caddc 7343   · cmul 7345  cmin 7643   # cap 8048   / cdiv 8129  cn 8412  2c2 8463  0cn0 8663  cz 8740  ...cfz 9414  cexp 9942  Σcsu 10729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-mulrcl 7434  ax-addcom 7435  ax-mulcom 7436  ax-addass 7437  ax-mulass 7438  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-1rid 7442  ax-0id 7443  ax-rnegex 7444  ax-precex 7445  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-apti 7450  ax-pre-ltadd 7451  ax-pre-mulgt0 7452  ax-pre-mulext 7453  ax-arch 7454  ax-caucvg 7455
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3392  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-id 4118  df-po 4121  df-iso 4122  df-iord 4191  df-on 4193  df-ilim 4194  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-isom 5019  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-irdg 6127  df-frec 6148  df-1o 6173  df-oadd 6177  df-er 6282  df-en 6448  df-dom 6449  df-fin 6450  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-reap 8042  df-ap 8049  df-div 8130  df-inn 8413  df-2 8471  df-3 8472  df-4 8473  df-n0 8664  df-z 8741  df-uz 9010  df-q 9095  df-rp 9125  df-fz 9415  df-fzo 9542  df-iseq 9841  df-seq3 9842  df-exp 9943  df-ihash 10172  df-cj 10264  df-re 10265  df-im 10266  df-rsqrt 10419  df-abs 10420  df-clim 10654  df-isum 10730
This theorem is referenced by:  geo2lim  10897
  Copyright terms: Public domain W3C validator