Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2sum GIF version

Theorem geo2sum 11223
 Description: The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geo2sum ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem geo2sum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9032 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℤ)
2 nnz 9024 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 272 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℤ)
4 simplr 502 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
5 2nn 8832 . . . . . 6 2 ∈ ℕ
6 elfznn 9774 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
76adantl 273 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
87nnnn0d 8981 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
9 nnexpcl 10246 . . . . . 6 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
105, 8, 9sylancr 408 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℕ)
1110nncnd 8691 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℂ)
1210nnap0d 8723 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) # 0)
134, 11, 12divclapd 8510 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴 / (2↑𝑘)) ∈ ℂ)
14 oveq2 5748 . . . 4 (𝑘 = (𝑗 + 1) → (2↑𝑘) = (2↑(𝑗 + 1)))
1514oveq2d 5756 . . 3 (𝑘 = (𝑗 + 1) → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑(𝑗 + 1))))
161, 1, 3, 13, 15fsumshftm 11154 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))))
17 1m1e0 8746 . . . . 5 (1 − 1) = 0
1817oveq1i 5750 . . . 4 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1918sumeq1i 11072 . . 3 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1)))
20 halfcn 8885 . . . . . . . . . 10 (1 / 2) ∈ ℂ
21 elfznn0 9834 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
2221adantl 273 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
23 expcl 10251 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
2420, 22, 23sylancr 408 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑𝑗) ∈ ℂ)
25 2cnd 8750 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ∈ ℂ)
26 2ap0 8770 . . . . . . . . . 10 2 # 0
2726a1i 9 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 # 0)
2824, 25, 27divrecapd 8513 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) / 2) = (((1 / 2)↑𝑗) · (1 / 2)))
29 expp1 10240 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
3020, 22, 29sylancr 408 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
31 elfzelz 9746 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ)
3231peano2zd 9127 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ)
3332adantl 273 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℤ)
3425, 27, 33exprecapd 10372 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (1 / (2↑(𝑗 + 1))))
3528, 30, 343eqtr2rd 2155 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (1 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) / 2))
3635oveq2d 5756 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 · (1 / (2↑(𝑗 + 1)))) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
37 simplr 502 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
38 peano2nn0 8968 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3922, 38syl 14 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
40 nnexpcl 10246 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
415, 39, 40sylancr 408 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℕ)
4241nncnd 8691 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℂ)
4341nnap0d 8723 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) # 0)
4437, 42, 43divrecapd 8513 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (𝐴 · (1 / (2↑(𝑗 + 1)))))
4524, 37, 25, 27div12apd 8547 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
4636, 44, 453eqtr4d 2158 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) · (𝐴 / 2)))
4746sumeq2dv 11077 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
48 0zd 9017 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 0 ∈ ℤ)
493, 1zsubcld 9129 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝑁 − 1) ∈ ℤ)
5048, 49fzfigd 10144 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
51 halfcl 8897 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
5251adantl 273 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) ∈ ℂ)
5350, 52, 24fsummulc1 11158 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
5447, 53eqtr4d 2151 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
5519, 54syl5eq 2160 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
56 2cnd 8750 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ∈ ℂ)
5726a1i 9 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 # 0)
5856, 57, 3exprecapd 10372 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 / 2)↑𝑁) = (1 / (2↑𝑁)))
5958oveq2d 5756 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − ((1 / 2)↑𝑁)) = (1 − (1 / (2↑𝑁))))
60 1mhlfehlf 8889 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
6160a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / 2)) = (1 / 2))
6259, 61oveq12d 5758 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) = ((1 − (1 / (2↑𝑁))) / (1 / 2)))
63 simpr 109 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
6463, 56, 57divrecap2d 8514 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) = ((1 / 2) · 𝐴))
6562, 64oveq12d 5758 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
66 ax-1cn 7677 . . . . . . 7 1 ∈ ℂ
67 nnnn0 8935 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6867adantr 272 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℕ0)
69 nnexpcl 10246 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
705, 68, 69sylancr 408 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℕ)
7170nnrecred 8724 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℝ)
7271recnd 7758 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℂ)
73 subcl 7925 . . . . . . 7 ((1 ∈ ℂ ∧ (1 / (2↑𝑁)) ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7466, 72, 73sylancr 408 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7520a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) ∈ ℂ)
7656, 57recap0d 8502 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 0)
7774, 75, 76divclapd 8510 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) / (1 / 2)) ∈ ℂ)
7877, 75, 63mulassd 7753 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
7974, 75, 76divcanap1d 8511 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) = (1 − (1 / (2↑𝑁))))
8079oveq1d 5755 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = ((1 − (1 / (2↑𝑁))) · 𝐴))
8165, 78, 803eqtr2d 2154 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = ((1 − (1 / (2↑𝑁))) · 𝐴))
82 halfre 8884 . . . . . . 7 (1 / 2) ∈ ℝ
83 1re 7729 . . . . . . 7 1 ∈ ℝ
84 halflt1 8888 . . . . . . 7 (1 / 2) < 1
8582, 83, 84ltapii 8359 . . . . . 6 (1 / 2) # 1
8685a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 1)
8775, 86, 68geoserap 11216 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) = ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))))
8887oveq1d 5755 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)))
89 mulid2 7728 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
9089adantl 273 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
9190eqcomd 2121 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 = (1 · 𝐴))
9270nncnd 8691 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℂ)
9370nnap0d 8723 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) # 0)
9463, 92, 93divrecap2d 8514 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / (2↑𝑁)) = ((1 / (2↑𝑁)) · 𝐴))
9591, 94oveq12d 5758 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9666a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
9796, 72, 63subdird 8141 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) · 𝐴) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9895, 97eqtr4d 2151 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 − (1 / (2↑𝑁))) · 𝐴))
9981, 88, 983eqtr4d 2158 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 − (𝐴 / (2↑𝑁))))
10016, 55, 993eqtrd 2152 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1314   ∈ wcel 1463   class class class wbr 3897  (class class class)co 5740  ℂcc 7582  0cc0 7584  1c1 7585   + caddc 7587   · cmul 7589   − cmin 7897   # cap 8306   / cdiv 8392  ℕcn 8677  2c2 8728  ℕ0cn0 8928  ℤcz 9005  ...cfz 9730  ↑cexp 10232  Σcsu 11062 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704 This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-fz 9731  df-fzo 9860  df-seqfrec 10159  df-exp 10233  df-ihash 10462  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-clim 10988  df-sumdc 11063 This theorem is referenced by:  geo2lim  11225  trilpolemlt1  13045
 Copyright terms: Public domain W3C validator