ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2sum GIF version

Theorem geo2sum 11406
Description: The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geo2sum ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem geo2sum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9189 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℤ)
2 nnz 9181 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 274 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℤ)
4 simplr 520 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
5 2nn 8989 . . . . . 6 2 ∈ ℕ
6 elfznn 9951 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
76adantl 275 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
87nnnn0d 9138 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
9 nnexpcl 10427 . . . . . 6 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
105, 8, 9sylancr 411 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℕ)
1110nncnd 8842 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℂ)
1210nnap0d 8874 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) # 0)
134, 11, 12divclapd 8658 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴 / (2↑𝑘)) ∈ ℂ)
14 oveq2 5829 . . . 4 (𝑘 = (𝑗 + 1) → (2↑𝑘) = (2↑(𝑗 + 1)))
1514oveq2d 5837 . . 3 (𝑘 = (𝑗 + 1) → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑(𝑗 + 1))))
161, 1, 3, 13, 15fsumshftm 11337 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))))
17 1m1e0 8897 . . . . 5 (1 − 1) = 0
1817oveq1i 5831 . . . 4 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1918sumeq1i 11255 . . 3 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1)))
20 halfcn 9042 . . . . . . . . . 10 (1 / 2) ∈ ℂ
21 elfznn0 10011 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
2221adantl 275 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
23 expcl 10432 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
2420, 22, 23sylancr 411 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑𝑗) ∈ ℂ)
25 2cnd 8901 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ∈ ℂ)
26 2ap0 8921 . . . . . . . . . 10 2 # 0
2726a1i 9 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 # 0)
2824, 25, 27divrecapd 8661 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) / 2) = (((1 / 2)↑𝑗) · (1 / 2)))
29 expp1 10421 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
3020, 22, 29sylancr 411 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
31 elfzelz 9923 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ)
3231peano2zd 9284 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ)
3332adantl 275 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℤ)
3425, 27, 33exprecapd 10554 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (1 / (2↑(𝑗 + 1))))
3528, 30, 343eqtr2rd 2197 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (1 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) / 2))
3635oveq2d 5837 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 · (1 / (2↑(𝑗 + 1)))) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
37 simplr 520 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
38 peano2nn0 9125 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3922, 38syl 14 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
40 nnexpcl 10427 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
415, 39, 40sylancr 411 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℕ)
4241nncnd 8842 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℂ)
4341nnap0d 8874 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) # 0)
4437, 42, 43divrecapd 8661 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (𝐴 · (1 / (2↑(𝑗 + 1)))))
4524, 37, 25, 27div12apd 8695 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
4636, 44, 453eqtr4d 2200 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) · (𝐴 / 2)))
4746sumeq2dv 11260 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
48 0zd 9174 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 0 ∈ ℤ)
493, 1zsubcld 9286 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝑁 − 1) ∈ ℤ)
5048, 49fzfigd 10325 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
51 halfcl 9054 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
5251adantl 275 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) ∈ ℂ)
5350, 52, 24fsummulc1 11341 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
5447, 53eqtr4d 2193 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
5519, 54syl5eq 2202 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
56 2cnd 8901 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ∈ ℂ)
5726a1i 9 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 # 0)
5856, 57, 3exprecapd 10554 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 / 2)↑𝑁) = (1 / (2↑𝑁)))
5958oveq2d 5837 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − ((1 / 2)↑𝑁)) = (1 − (1 / (2↑𝑁))))
60 1mhlfehlf 9046 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
6160a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / 2)) = (1 / 2))
6259, 61oveq12d 5839 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) = ((1 − (1 / (2↑𝑁))) / (1 / 2)))
63 simpr 109 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
6463, 56, 57divrecap2d 8662 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) = ((1 / 2) · 𝐴))
6562, 64oveq12d 5839 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
66 ax-1cn 7820 . . . . . . 7 1 ∈ ℂ
67 nnnn0 9092 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6867adantr 274 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℕ0)
69 nnexpcl 10427 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
705, 68, 69sylancr 411 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℕ)
7170nnrecred 8875 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℝ)
7271recnd 7901 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℂ)
73 subcl 8069 . . . . . . 7 ((1 ∈ ℂ ∧ (1 / (2↑𝑁)) ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7466, 72, 73sylancr 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7520a1i 9 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) ∈ ℂ)
7656, 57recap0d 8650 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 0)
7774, 75, 76divclapd 8658 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) / (1 / 2)) ∈ ℂ)
7877, 75, 63mulassd 7896 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
7974, 75, 76divcanap1d 8659 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) = (1 − (1 / (2↑𝑁))))
8079oveq1d 5836 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = ((1 − (1 / (2↑𝑁))) · 𝐴))
8165, 78, 803eqtr2d 2196 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = ((1 − (1 / (2↑𝑁))) · 𝐴))
82 halfre 9041 . . . . . . 7 (1 / 2) ∈ ℝ
83 1re 7872 . . . . . . 7 1 ∈ ℝ
84 halflt1 9045 . . . . . . 7 (1 / 2) < 1
8582, 83, 84ltapii 8505 . . . . . 6 (1 / 2) # 1
8685a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) # 1)
8775, 86, 68geoserap 11399 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) = ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))))
8887oveq1d 5836 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)))
89 mulid2 7871 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
9089adantl 275 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
9190eqcomd 2163 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 = (1 · 𝐴))
9270nncnd 8842 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℂ)
9370nnap0d 8874 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) # 0)
9463, 92, 93divrecap2d 8662 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / (2↑𝑁)) = ((1 / (2↑𝑁)) · 𝐴))
9591, 94oveq12d 5839 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9666a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
9796, 72, 63subdird 8285 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) · 𝐴) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9895, 97eqtr4d 2193 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 − (1 / (2↑𝑁))) · 𝐴))
9981, 88, 983eqtr4d 2200 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 − (𝐴 / (2↑𝑁))))
10016, 55, 993eqtrd 2194 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128   class class class wbr 3965  (class class class)co 5821  cc 7725  0cc0 7727  1c1 7728   + caddc 7730   · cmul 7732  cmin 8041   # cap 8451   / cdiv 8540  cn 8828  2c2 8879  0cn0 9085  cz 9162  ...cfz 9907  cexp 10413  Σcsu 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-mulrcl 7826  ax-addcom 7827  ax-mulcom 7828  ax-addass 7829  ax-mulass 7830  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-1rid 7834  ax-0id 7835  ax-rnegex 7836  ax-precex 7837  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-apti 7842  ax-pre-ltadd 7843  ax-pre-mulgt0 7844  ax-pre-mulext 7845  ax-arch 7846  ax-caucvg 7847
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-reap 8445  df-ap 8452  df-div 8541  df-inn 8829  df-2 8887  df-3 8888  df-4 8889  df-n0 9086  df-z 9163  df-uz 9435  df-q 9524  df-rp 9556  df-fz 9908  df-fzo 10037  df-seqfrec 10340  df-exp 10414  df-ihash 10645  df-cj 10737  df-re 10738  df-im 10739  df-rsqrt 10893  df-abs 10894  df-clim 11171  df-sumdc 11246
This theorem is referenced by:  geo2lim  11408  trilpolemlt1  13599
  Copyright terms: Public domain W3C validator