ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnegmod GIF version

Theorem qnegmod 10342
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
qnegmod ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))

Proof of Theorem qnegmod
StepHypRef Expression
1 qcn 9610 . . . . . 6 (𝑁 ∈ ℚ → 𝑁 ∈ ℂ)
213ad2ant2 1019 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
3 qcn 9610 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
433ad2ant1 1018 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝐴 ∈ ℂ)
52, 4negsubd 8251 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 + -𝐴) = (𝑁𝐴))
65eqcomd 2183 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁𝐴) = (𝑁 + -𝐴))
76oveq1d 5883 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑁𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
82mulid2d 7953 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) = 𝑁)
98oveq1d 5883 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴))
109oveq1d 5883 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
11 1cnd 7951 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℂ)
1211, 2mulcld 7955 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) ∈ ℂ)
13 qnegcl 9612 . . . . . . 7 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
14 qcn 9610 . . . . . . 7 (-𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
1513, 14syl 14 . . . . . 6 (𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
16153ad2ant1 1018 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℂ)
1712, 16addcomd 8085 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁)))
1817oveq1d 5883 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁))
19133ad2ant1 1018 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℚ)
20 1zzd 9256 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℤ)
21 simp2 998 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℚ)
22 simp3 999 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 0 < 𝑁)
23 modqcyc 10332 . . . 4 (((-𝐴 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2419, 20, 21, 22, 23syl22anc 1239 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2518, 24eqtrd 2210 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁))
267, 10, 253eqtr2rd 2217 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4000  (class class class)co 5868  cc 7787  0cc0 7789  1c1 7790   + caddc 7792   · cmul 7794   < clt 7969  cmin 8105  -cneg 8106  cz 9229  cq 9595   mod cmo 10295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-mulrcl 7888  ax-addcom 7889  ax-mulcom 7890  ax-addass 7891  ax-mulass 7892  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-1rid 7896  ax-0id 7897  ax-rnegex 7898  ax-precex 7899  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-apti 7904  ax-pre-ltadd 7905  ax-pre-mulgt0 7906  ax-pre-mulext 7907  ax-arch 7908
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4289  df-po 4292  df-iso 4293  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-reap 8509  df-ap 8516  df-div 8606  df-inn 8896  df-n0 9153  df-z 9230  df-q 9596  df-rp 9628  df-fl 10243  df-mod 10296
This theorem is referenced by:  m1modnnsub1  10343
  Copyright terms: Public domain W3C validator