Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnegmod GIF version

Theorem qnegmod 10246
 Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
qnegmod ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))

Proof of Theorem qnegmod
StepHypRef Expression
1 qcn 9521 . . . . . 6 (𝑁 ∈ ℚ → 𝑁 ∈ ℂ)
213ad2ant2 1004 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
3 qcn 9521 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
433ad2ant1 1003 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝐴 ∈ ℂ)
52, 4negsubd 8171 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 + -𝐴) = (𝑁𝐴))
65eqcomd 2160 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁𝐴) = (𝑁 + -𝐴))
76oveq1d 5829 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑁𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
82mulid2d 7875 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) = 𝑁)
98oveq1d 5829 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴))
109oveq1d 5829 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
11 1cnd 7873 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℂ)
1211, 2mulcld 7877 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) ∈ ℂ)
13 qnegcl 9523 . . . . . . 7 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
14 qcn 9521 . . . . . . 7 (-𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
1513, 14syl 14 . . . . . 6 (𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
16153ad2ant1 1003 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℂ)
1712, 16addcomd 8005 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁)))
1817oveq1d 5829 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁))
19133ad2ant1 1003 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℚ)
20 1zzd 9173 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℤ)
21 simp2 983 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℚ)
22 simp3 984 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 0 < 𝑁)
23 modqcyc 10236 . . . 4 (((-𝐴 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2419, 20, 21, 22, 23syl22anc 1218 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2518, 24eqtrd 2187 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁))
267, 10, 253eqtr2rd 2194 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 963   = wceq 1332   ∈ wcel 2125   class class class wbr 3961  (class class class)co 5814  ℂcc 7709  0cc0 7711  1c1 7712   + caddc 7714   · cmul 7716   < clt 7891   − cmin 8025  -cneg 8026  ℤcz 9146  ℚcq 9506   mod cmo 10199 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-n0 9070  df-z 9147  df-q 9507  df-rp 9539  df-fl 10147  df-mod 10200 This theorem is referenced by:  m1modnnsub1  10247
 Copyright terms: Public domain W3C validator