![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qnegmod | GIF version |
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.) |
Ref | Expression |
---|---|
qnegmod | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qcn 9014 | . . . . . 6 ⊢ (𝑁 ∈ ℚ → 𝑁 ∈ ℂ) | |
2 | 1 | 3ad2ant2 961 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℂ) |
3 | qcn 9014 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
4 | 3 | 3ad2ant1 960 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝐴 ∈ ℂ) |
5 | 2, 4 | negsubd 7702 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 + -𝐴) = (𝑁 − 𝐴)) |
6 | 5 | eqcomd 2088 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 − 𝐴) = (𝑁 + -𝐴)) |
7 | 6 | oveq1d 5606 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑁 − 𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
8 | 2 | mulid2d 7409 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) = 𝑁) |
9 | 8 | oveq1d 5606 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴)) |
10 | 9 | oveq1d 5606 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
11 | 1cnd 7407 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℂ) | |
12 | 11, 2 | mulcld 7411 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) ∈ ℂ) |
13 | qnegcl 9016 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) | |
14 | qcn 9014 | . . . . . . 7 ⊢ (-𝐴 ∈ ℚ → -𝐴 ∈ ℂ) | |
15 | 13, 14 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℂ) |
16 | 15 | 3ad2ant1 960 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℂ) |
17 | 12, 16 | addcomd 7536 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁))) |
18 | 17 | oveq1d 5606 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁)) |
19 | 13 | 3ad2ant1 960 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℚ) |
20 | 1zzd 8673 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℤ) | |
21 | simp2 940 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℚ) | |
22 | simp3 941 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 0 < 𝑁) | |
23 | modqcyc 9655 | . . . 4 ⊢ (((-𝐴 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) | |
24 | 19, 20, 21, 22, 23 | syl22anc 1171 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) |
25 | 18, 24 | eqtrd 2115 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁)) |
26 | 7, 10, 25 | 3eqtr2rd 2122 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 class class class wbr 3811 (class class class)co 5591 ℂcc 7251 0cc0 7253 1c1 7254 + caddc 7256 · cmul 7258 < clt 7425 − cmin 7556 -cneg 7557 ℤcz 8646 ℚcq 8999 mod cmo 9618 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-mulrcl 7347 ax-addcom 7348 ax-mulcom 7349 ax-addass 7350 ax-mulass 7351 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-1rid 7355 ax-0id 7356 ax-rnegex 7357 ax-precex 7358 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 ax-pre-ltadd 7364 ax-pre-mulgt0 7365 ax-pre-mulext 7366 ax-arch 7367 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4084 df-po 4087 df-iso 4088 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-reap 7952 df-ap 7959 df-div 8038 df-inn 8317 df-n0 8566 df-z 8647 df-q 9000 df-rp 9030 df-fl 9566 df-mod 9619 |
This theorem is referenced by: m1modnnsub1 9666 |
Copyright terms: Public domain | W3C validator |