ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnegmod GIF version

Theorem qnegmod 10478
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
qnegmod ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))

Proof of Theorem qnegmod
StepHypRef Expression
1 qcn 9725 . . . . . 6 (𝑁 ∈ ℚ → 𝑁 ∈ ℂ)
213ad2ant2 1021 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
3 qcn 9725 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
433ad2ant1 1020 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝐴 ∈ ℂ)
52, 4negsubd 8360 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 + -𝐴) = (𝑁𝐴))
65eqcomd 2202 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁𝐴) = (𝑁 + -𝐴))
76oveq1d 5940 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑁𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
82mulid2d 8062 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) = 𝑁)
98oveq1d 5940 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴))
109oveq1d 5940 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
11 1cnd 8059 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℂ)
1211, 2mulcld 8064 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) ∈ ℂ)
13 qnegcl 9727 . . . . . . 7 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
14 qcn 9725 . . . . . . 7 (-𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
1513, 14syl 14 . . . . . 6 (𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
16153ad2ant1 1020 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℂ)
1712, 16addcomd 8194 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁)))
1817oveq1d 5940 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁))
19133ad2ant1 1020 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℚ)
20 1zzd 9370 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℤ)
21 simp2 1000 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℚ)
22 simp3 1001 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 0 < 𝑁)
23 modqcyc 10468 . . . 4 (((-𝐴 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2419, 20, 21, 22, 23syl22anc 1250 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2518, 24eqtrd 2229 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁))
267, 10, 253eqtr2rd 2236 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cmin 8214  -cneg 8215  cz 9343  cq 9710   mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by:  m1modnnsub1  10479  gausslemma2dlem5a  15390
  Copyright terms: Public domain W3C validator