![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqeqmodmin | GIF version |
Description: A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.) |
Ref | Expression |
---|---|
modqeqmodmin | ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modqid0 10424 | . . . . 5 ⊢ ((𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑀 mod 𝑀) = 0) | |
2 | 1 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑀 mod 𝑀) = 0) |
3 | modqge0 10406 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (𝐴 mod 𝑀)) | |
4 | 2, 3 | eqbrtrd 4052 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀)) |
5 | simp1 999 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℚ) | |
6 | simp2 1000 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ) | |
7 | simp3 1001 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 < 𝑀) | |
8 | modqsubdir 10467 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))) | |
9 | 5, 6, 6, 7, 8 | syl22anc 1250 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))) |
10 | 4, 9 | mpbid 147 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))) |
11 | 2 | eqcomd 2199 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 = (𝑀 mod 𝑀)) |
12 | 11 | oveq2d 5935 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) − 0) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))) |
13 | modqcl 10400 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) ∈ ℚ) | |
14 | qcn 9702 | . . . 4 ⊢ ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) ∈ ℂ) |
16 | 15 | subid1d 8321 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) − 0) = (𝐴 mod 𝑀)) |
17 | 10, 12, 16 | 3eqtr2rd 2233 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 0cc0 7874 < clt 8056 ≤ cle 8057 − cmin 8192 ℚcq 9687 mod cmo 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-q 9688 df-rp 9723 df-fl 10342 df-mod 10397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |