Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > faclbnd2 | GIF version |
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
Ref | Expression |
---|---|
faclbnd2 | ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq2 10550 | . . . . . 6 ⊢ (2↑2) = 4 | |
2 | 2t2e4 9011 | . . . . . 6 ⊢ (2 · 2) = 4 | |
3 | 1, 2 | eqtr4i 2189 | . . . . 5 ⊢ (2↑2) = (2 · 2) |
4 | 3 | oveq2i 5853 | . . . 4 ⊢ ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2)) |
5 | 2cn 8928 | . . . . . 6 ⊢ 2 ∈ ℂ | |
6 | expp1 10462 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
7 | 5, 6 | mpan 421 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
8 | 7 | oveq1d 5857 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
9 | 4, 8 | syl5eq 2211 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2))) |
10 | expcl 10473 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ) | |
11 | 5, 10 | mpan 421 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
12 | 5 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
13 | 2ap0 8950 | . . . . 5 ⊢ 2 # 0 | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 # 0) |
15 | 11, 12, 12, 12, 14, 14 | divmuldivapd 8728 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
16 | 2div2e1 8989 | . . . . 5 ⊢ (2 / 2) = 1 | |
17 | 16 | oveq2i 5853 | . . . 4 ⊢ (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1) |
18 | 11 | halfcld 9101 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ) |
19 | 18 | mulid1d 7916 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2)) |
20 | 17, 19 | syl5eq 2211 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2)) |
21 | 9, 15, 20 | 3eqtr2rd 2205 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2))) |
22 | 2nn0 9131 | . . . 4 ⊢ 2 ∈ ℕ0 | |
23 | faclbnd 10654 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) | |
24 | 22, 23 | mpan 421 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) |
25 | 2re 8927 | . . . . 5 ⊢ 2 ∈ ℝ | |
26 | peano2nn0 9154 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
27 | reexpcl 10472 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ) | |
28 | 25, 26, 27 | sylancr 411 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ) |
29 | faccl 10648 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
30 | 29 | nnred 8870 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ) |
31 | 4re 8934 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
32 | 1, 31 | eqeltri 2239 | . . . . . 6 ⊢ (2↑2) ∈ ℝ |
33 | 4pos 8954 | . . . . . . 7 ⊢ 0 < 4 | |
34 | 33, 1 | breqtrri 4009 | . . . . . 6 ⊢ 0 < (2↑2) |
35 | 32, 34 | pm3.2i 270 | . . . . 5 ⊢ ((2↑2) ∈ ℝ ∧ 0 < (2↑2)) |
36 | ledivmul 8772 | . . . . 5 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) | |
37 | 35, 36 | mp3an3 1316 | . . . 4 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
38 | 28, 30, 37 | syl2anc 409 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
39 | 24, 38 | mpbird 166 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁)) |
40 | 21, 39 | eqbrtrd 4004 | 1 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 < clt 7933 ≤ cle 7934 # cap 8479 / cdiv 8568 2c2 8908 4c4 8910 ℕ0cn0 9114 ↑cexp 10454 !cfa 10638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-fac 10639 |
This theorem is referenced by: ege2le3 11612 |
Copyright terms: Public domain | W3C validator |