| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faclbnd2 | GIF version | ||
| Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
| Ref | Expression |
|---|---|
| faclbnd2 | ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq2 10812 | . . . . . 6 ⊢ (2↑2) = 4 | |
| 2 | 2t2e4 9221 | . . . . . 6 ⊢ (2 · 2) = 4 | |
| 3 | 1, 2 | eqtr4i 2230 | . . . . 5 ⊢ (2↑2) = (2 · 2) |
| 4 | 3 | oveq2i 5973 | . . . 4 ⊢ ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2)) |
| 5 | 2cn 9137 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 6 | expp1 10723 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
| 7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 8 | 7 | oveq1d 5977 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
| 9 | 4, 8 | eqtrid 2251 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2))) |
| 10 | expcl 10734 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ) | |
| 11 | 5, 10 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
| 12 | 5 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
| 13 | 2ap0 9159 | . . . . 5 ⊢ 2 # 0 | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 # 0) |
| 15 | 11, 12, 12, 12, 14, 14 | divmuldivapd 8935 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
| 16 | 2div2e1 9199 | . . . . 5 ⊢ (2 / 2) = 1 | |
| 17 | 16 | oveq2i 5973 | . . . 4 ⊢ (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1) |
| 18 | 11 | halfcld 9312 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ) |
| 19 | 18 | mulridd 8119 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2)) |
| 20 | 17, 19 | eqtrid 2251 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2)) |
| 21 | 9, 15, 20 | 3eqtr2rd 2246 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2))) |
| 22 | 2nn0 9342 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 23 | faclbnd 10918 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) | |
| 24 | 22, 23 | mpan 424 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) |
| 25 | 2re 9136 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 26 | peano2nn0 9365 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 27 | reexpcl 10733 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ) | |
| 28 | 25, 26, 27 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ) |
| 29 | faccl 10912 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
| 30 | 29 | nnred 9079 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ) |
| 31 | 4re 9143 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
| 32 | 1, 31 | eqeltri 2279 | . . . . . 6 ⊢ (2↑2) ∈ ℝ |
| 33 | 4pos 9163 | . . . . . . 7 ⊢ 0 < 4 | |
| 34 | 33, 1 | breqtrri 4081 | . . . . . 6 ⊢ 0 < (2↑2) |
| 35 | 32, 34 | pm3.2i 272 | . . . . 5 ⊢ ((2↑2) ∈ ℝ ∧ 0 < (2↑2)) |
| 36 | ledivmul 8980 | . . . . 5 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) | |
| 37 | 35, 36 | mp3an3 1339 | . . . 4 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
| 38 | 28, 30, 37 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
| 39 | 24, 38 | mpbird 167 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁)) |
| 40 | 21, 39 | eqbrtrd 4076 | 1 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4054 ‘cfv 5285 (class class class)co 5962 ℂcc 7953 ℝcr 7954 0cc0 7955 1c1 7956 + caddc 7958 · cmul 7960 < clt 8137 ≤ cle 8138 # cap 8684 / cdiv 8775 2c2 9117 4c4 9119 ℕ0cn0 9325 ↑cexp 10715 !cfa 10902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-rp 9806 df-seqfrec 10625 df-exp 10716 df-fac 10903 |
| This theorem is referenced by: ege2le3 12067 |
| Copyright terms: Public domain | W3C validator |