| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faclbnd2 | GIF version | ||
| Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
| Ref | Expression |
|---|---|
| faclbnd2 | ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq2 10780 | . . . . . 6 ⊢ (2↑2) = 4 | |
| 2 | 2t2e4 9191 | . . . . . 6 ⊢ (2 · 2) = 4 | |
| 3 | 1, 2 | eqtr4i 2229 | . . . . 5 ⊢ (2↑2) = (2 · 2) |
| 4 | 3 | oveq2i 5955 | . . . 4 ⊢ ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2)) |
| 5 | 2cn 9107 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 6 | expp1 10691 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
| 7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 8 | 7 | oveq1d 5959 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
| 9 | 4, 8 | eqtrid 2250 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2))) |
| 10 | expcl 10702 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ) | |
| 11 | 5, 10 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
| 12 | 5 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
| 13 | 2ap0 9129 | . . . . 5 ⊢ 2 # 0 | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 # 0) |
| 15 | 11, 12, 12, 12, 14, 14 | divmuldivapd 8905 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
| 16 | 2div2e1 9169 | . . . . 5 ⊢ (2 / 2) = 1 | |
| 17 | 16 | oveq2i 5955 | . . . 4 ⊢ (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1) |
| 18 | 11 | halfcld 9282 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ) |
| 19 | 18 | mulridd 8089 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2)) |
| 20 | 17, 19 | eqtrid 2250 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2)) |
| 21 | 9, 15, 20 | 3eqtr2rd 2245 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2))) |
| 22 | 2nn0 9312 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 23 | faclbnd 10886 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) | |
| 24 | 22, 23 | mpan 424 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) |
| 25 | 2re 9106 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 26 | peano2nn0 9335 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 27 | reexpcl 10701 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ) | |
| 28 | 25, 26, 27 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ) |
| 29 | faccl 10880 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
| 30 | 29 | nnred 9049 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ) |
| 31 | 4re 9113 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
| 32 | 1, 31 | eqeltri 2278 | . . . . . 6 ⊢ (2↑2) ∈ ℝ |
| 33 | 4pos 9133 | . . . . . . 7 ⊢ 0 < 4 | |
| 34 | 33, 1 | breqtrri 4071 | . . . . . 6 ⊢ 0 < (2↑2) |
| 35 | 32, 34 | pm3.2i 272 | . . . . 5 ⊢ ((2↑2) ∈ ℝ ∧ 0 < (2↑2)) |
| 36 | ledivmul 8950 | . . . . 5 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) | |
| 37 | 35, 36 | mp3an3 1339 | . . . 4 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
| 38 | 28, 30, 37 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
| 39 | 24, 38 | mpbird 167 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁)) |
| 40 | 21, 39 | eqbrtrd 4066 | 1 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 ℝcr 7924 0cc0 7925 1c1 7926 + caddc 7928 · cmul 7930 < clt 8107 ≤ cle 8108 # cap 8654 / cdiv 8745 2c2 9087 4c4 9089 ℕ0cn0 9295 ↑cexp 10683 !cfa 10870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-rp 9776 df-seqfrec 10593 df-exp 10684 df-fac 10871 |
| This theorem is referenced by: ege2le3 11982 |
| Copyright terms: Public domain | W3C validator |