![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > faclbnd2 | GIF version |
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
Ref | Expression |
---|---|
faclbnd2 | ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq2 10709 | . . . . . 6 ⊢ (2↑2) = 4 | |
2 | 2t2e4 9139 | . . . . . 6 ⊢ (2 · 2) = 4 | |
3 | 1, 2 | eqtr4i 2217 | . . . . 5 ⊢ (2↑2) = (2 · 2) |
4 | 3 | oveq2i 5930 | . . . 4 ⊢ ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2)) |
5 | 2cn 9055 | . . . . . 6 ⊢ 2 ∈ ℂ | |
6 | expp1 10620 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
8 | 7 | oveq1d 5934 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
9 | 4, 8 | eqtrid 2238 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2))) |
10 | expcl 10631 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ) | |
11 | 5, 10 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
12 | 5 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
13 | 2ap0 9077 | . . . . 5 ⊢ 2 # 0 | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 # 0) |
15 | 11, 12, 12, 12, 14, 14 | divmuldivapd 8853 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2))) |
16 | 2div2e1 9117 | . . . . 5 ⊢ (2 / 2) = 1 | |
17 | 16 | oveq2i 5930 | . . . 4 ⊢ (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1) |
18 | 11 | halfcld 9230 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ) |
19 | 18 | mulridd 8038 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2)) |
20 | 17, 19 | eqtrid 2238 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2)) |
21 | 9, 15, 20 | 3eqtr2rd 2233 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2))) |
22 | 2nn0 9260 | . . . 4 ⊢ 2 ∈ ℕ0 | |
23 | faclbnd 10815 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) | |
24 | 22, 23 | mpan 424 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))) |
25 | 2re 9054 | . . . . 5 ⊢ 2 ∈ ℝ | |
26 | peano2nn0 9283 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
27 | reexpcl 10630 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ) | |
28 | 25, 26, 27 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ) |
29 | faccl 10809 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
30 | 29 | nnred 8997 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ) |
31 | 4re 9061 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
32 | 1, 31 | eqeltri 2266 | . . . . . 6 ⊢ (2↑2) ∈ ℝ |
33 | 4pos 9081 | . . . . . . 7 ⊢ 0 < 4 | |
34 | 33, 1 | breqtrri 4057 | . . . . . 6 ⊢ 0 < (2↑2) |
35 | 32, 34 | pm3.2i 272 | . . . . 5 ⊢ ((2↑2) ∈ ℝ ∧ 0 < (2↑2)) |
36 | ledivmul 8898 | . . . . 5 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) | |
37 | 35, 36 | mp3an3 1337 | . . . 4 ⊢ (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
38 | 28, 30, 37 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))) |
39 | 24, 38 | mpbird 167 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁)) |
40 | 21, 39 | eqbrtrd 4052 | 1 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 < clt 8056 ≤ cle 8057 # cap 8602 / cdiv 8693 2c2 9035 4c4 9037 ℕ0cn0 9243 ↑cexp 10612 !cfa 10799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-fac 10800 |
This theorem is referenced by: ege2le3 11817 |
Copyright terms: Public domain | W3C validator |