![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0sqrtelqelz | GIF version |
Description: If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.) |
Ref | Expression |
---|---|
nn0sqrtelqelz | ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qdencl 12327 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ) | |
2 | 1 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ) |
3 | 2 | nnred 8995 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ) |
4 | 1red 8034 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ) | |
5 | 2 | nnnn0d 9293 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0) |
6 | 5 | nn0ge0d 9296 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴))) |
7 | 0le1 8500 | . . . 4 ⊢ 0 ≤ 1 | |
8 | 7 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1) |
9 | sq1 10704 | . . . . 5 ⊢ (1↑2) = 1 | |
10 | 9 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1) |
11 | simpl 109 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℕ0) | |
12 | 11 | nn0red 9294 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℝ) |
13 | 11 | nn0ge0d 9296 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 𝐴) |
14 | resqrtth 11175 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | |
15 | 12, 13, 14 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴) |
16 | 15 | fveq2d 5558 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴)) |
17 | nn0z 9337 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
18 | 11, 17 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ) |
19 | zq 9691 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
20 | 17, 19 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℚ) |
21 | 11, 20 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ) |
22 | qden1elz 12343 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
23 | 21, 22 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
24 | 18, 23 | mpbird 167 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1) |
25 | 16, 24 | eqtrd 2226 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1) |
26 | densq 12342 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) | |
27 | 26 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) |
28 | 10, 25, 27 | 3eqtr2rd 2233 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2)) |
29 | 3, 4, 6, 8, 28 | sq11d 10777 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1) |
30 | qden1elz 12343 | . . 3 ⊢ ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) | |
31 | 30 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) |
32 | 29, 31 | mpbid 147 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 ≤ cle 8055 ℕcn 8982 2c2 9033 ℕ0cn0 9240 ℤcz 9317 ℚcq 9684 ↑cexp 10609 √csqrt 11140 denomcdenom 12320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-sup 7043 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-dvds 11931 df-gcd 12080 df-numer 12321 df-denom 12322 |
This theorem is referenced by: nonsq 12345 |
Copyright terms: Public domain | W3C validator |