| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0sqrtelqelz | GIF version | ||
| Description: If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.) |
| Ref | Expression |
|---|---|
| nn0sqrtelqelz | ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qdencl 12357 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ) |
| 3 | 2 | nnred 9003 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ) |
| 4 | 1red 8041 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ) | |
| 5 | 2 | nnnn0d 9302 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0) |
| 6 | 5 | nn0ge0d 9305 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴))) |
| 7 | 0le1 8508 | . . . 4 ⊢ 0 ≤ 1 | |
| 8 | 7 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1) |
| 9 | sq1 10725 | . . . . 5 ⊢ (1↑2) = 1 | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1) |
| 11 | simpl 109 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℕ0) | |
| 12 | 11 | nn0red 9303 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℝ) |
| 13 | 11 | nn0ge0d 9305 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 𝐴) |
| 14 | resqrtth 11196 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | |
| 15 | 12, 13, 14 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴) |
| 16 | 15 | fveq2d 5562 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴)) |
| 17 | nn0z 9346 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
| 18 | 11, 17 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ) |
| 19 | zq 9700 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 20 | 17, 19 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℚ) |
| 21 | 11, 20 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ) |
| 22 | qden1elz 12373 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
| 23 | 21, 22 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
| 24 | 18, 23 | mpbird 167 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1) |
| 25 | 16, 24 | eqtrd 2229 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1) |
| 26 | densq 12372 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) | |
| 27 | 26 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) |
| 28 | 10, 25, 27 | 3eqtr2rd 2236 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2)) |
| 29 | 3, 4, 6, 8, 28 | sq11d 10798 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1) |
| 30 | qden1elz 12373 | . . 3 ⊢ ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) | |
| 31 | 30 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) |
| 32 | 29, 31 | mpbid 147 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℝcr 7878 0cc0 7879 1c1 7880 ≤ cle 8062 ℕcn 8990 2c2 9041 ℕ0cn0 9249 ℤcz 9326 ℚcq 9693 ↑cexp 10630 √csqrt 11161 denomcdenom 12350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 df-numer 12351 df-denom 12352 |
| This theorem is referenced by: nonsq 12375 |
| Copyright terms: Public domain | W3C validator |