Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0sqrtelqelz GIF version

Theorem nn0sqrtelqelz 11918
 Description: If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.)
Assertion
Ref Expression
nn0sqrtelqelz ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)

Proof of Theorem nn0sqrtelqelz
StepHypRef Expression
1 qdencl 11901 . . . . 5 ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ)
21adantl 275 . . . 4 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ)
32nnred 8756 . . 3 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ)
4 1red 7804 . . 3 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ)
52nnnn0d 9053 . . . 4 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0)
65nn0ge0d 9056 . . 3 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴)))
7 0le1 8266 . . . 4 0 ≤ 1
87a1i 9 . . 3 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1)
9 sq1 10416 . . . . 5 (1↑2) = 1
109a1i 9 . . . 4 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1)
11 simpl 108 . . . . . . . 8 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℕ0)
1211nn0red 9054 . . . . . . 7 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℝ)
1311nn0ge0d 9056 . . . . . . 7 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 𝐴)
14 resqrtth 10834 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
1512, 13, 14syl2anc 409 . . . . . 6 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴)
1615fveq2d 5432 . . . . 5 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴))
17 nn0z 9097 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1811, 17syl 14 . . . . . 6 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ)
19 zq 9444 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2017, 19syl 14 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
2111, 20syl 14 . . . . . . 7 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ)
22 qden1elz 11917 . . . . . . 7 (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ))
2321, 22syl 14 . . . . . 6 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ))
2418, 23mpbird 166 . . . . 5 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1)
2516, 24eqtrd 2173 . . . 4 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1)
26 densq 11916 . . . . 5 ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2))
2726adantl 275 . . . 4 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2))
2810, 25, 273eqtr2rd 2180 . . 3 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2))
293, 4, 6, 8, 28sq11d 10487 . 2 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1)
30 qden1elz 11917 . . 3 ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ))
3130adantl 275 . 2 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ))
3229, 31mpbid 146 1 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481   class class class wbr 3936  ‘cfv 5130  (class class class)co 5781  ℝcr 7642  0cc0 7643  1c1 7644   ≤ cle 7824  ℕcn 8743  2c2 8794  ℕ0cn0 9000  ℤcz 9077  ℚcq 9437  ↑cexp 10322  √csqrt 10799  denomcdenom 11894 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-sup 6878  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-fz 9821  df-fzo 9950  df-fl 10073  df-mod 10126  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-dvds 11528  df-gcd 11670  df-numer 11895  df-denom 11896 This theorem is referenced by:  nonsq  11919
 Copyright terms: Public domain W3C validator