![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr2d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr2rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtr4d 2229 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr2d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr2d 2227 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: difinfsn 7161 nnnninfeq 7189 prarloclemlo 7556 recexgt0sr 7835 xp1d2m1eqxm1d2 9238 qnegmod 10443 modqeqmodmin 10468 faclbnd2 10816 cjmulval 11035 fsumsplit 11553 fzosump1 11563 isumclim3 11569 bcxmas 11635 trireciplem 11646 geo2sum 11660 geo2lim 11662 geoisum1c 11666 cvgratnnlemseq 11672 mertenslemi1 11681 fprodsplitdc 11742 eftlub 11836 addsin 11888 subsin 11889 subcos 11893 qredeu 12238 nn0sqrtelqelz 12347 4sqlem15 12546 strslfv2d 12664 mulgaddcomlem 13218 conjghm 13349 dvexp 14890 tangtx 15014 logsqrt 15098 lgsquad2lem1 15238 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |