| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2232 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: difinfsn 7175 nnnninfeq 7203 prarloclemlo 7578 recexgt0sr 7857 xp1d2m1eqxm1d2 9261 qnegmod 10478 modqeqmodmin 10503 faclbnd2 10851 cjmulval 11070 fsumsplit 11589 fzosump1 11599 isumclim3 11605 bcxmas 11671 trireciplem 11682 geo2sum 11696 geo2lim 11698 geoisum1c 11702 cvgratnnlemseq 11708 mertenslemi1 11717 fprodsplitdc 11778 eftlub 11872 addsin 11924 subsin 11925 subcos 11929 qredeu 12290 nn0sqrtelqelz 12399 4sqlem15 12599 strslfv2d 12746 mulgaddcomlem 13351 conjghm 13482 dvexp 15031 tangtx 15158 logsqrt 15243 mpodvdsmulf1o 15310 lgsquad2lem1 15406 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |