| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2241 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: difinfsn 7204 nnnninfeq 7232 prarloclemlo 7609 recexgt0sr 7888 xp1d2m1eqxm1d2 9292 qnegmod 10516 modqeqmodmin 10541 faclbnd2 10889 cjmulval 11232 fsumsplit 11751 fzosump1 11761 isumclim3 11767 bcxmas 11833 trireciplem 11844 geo2sum 11858 geo2lim 11860 geoisum1c 11864 cvgratnnlemseq 11870 mertenslemi1 11879 fprodsplitdc 11940 eftlub 12034 addsin 12086 subsin 12087 subcos 12091 qredeu 12452 nn0sqrtelqelz 12561 4sqlem15 12761 strslfv2d 12908 mulgaddcomlem 13514 conjghm 13645 dvexp 15216 tangtx 15343 logsqrt 15428 mpodvdsmulf1o 15495 lgsquad2lem1 15591 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |