![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr2d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr2rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtr4d 2224 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr2d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr2d 2222 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-4 1520 ax-17 1536 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-cleq 2181 |
This theorem is referenced by: difinfsn 7116 nnnninfeq 7143 prarloclemlo 7510 recexgt0sr 7789 xp1d2m1eqxm1d2 9188 qnegmod 10386 modqeqmodmin 10411 faclbnd2 10739 cjmulval 10914 fsumsplit 11432 fzosump1 11442 isumclim3 11448 bcxmas 11514 trireciplem 11525 geo2sum 11539 geo2lim 11541 geoisum1c 11545 cvgratnnlemseq 11551 mertenslemi1 11560 fprodsplitdc 11621 eftlub 11715 addsin 11767 subsin 11768 subcos 11772 qredeu 12114 nn0sqrtelqelz 12223 strslfv2d 12522 mulgaddcomlem 13050 conjghm 13175 dvexp 14558 tangtx 14642 logsqrt 14726 2sqlem8 14853 |
Copyright terms: Public domain | W3C validator |