| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2265 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: difinfsn 7267 nnnninfeq 7295 prarloclemlo 7681 recexgt0sr 7960 xp1d2m1eqxm1d2 9364 qnegmod 10591 modqeqmodmin 10616 faclbnd2 10964 cats1un 11253 cjmulval 11399 fsumsplit 11918 fzosump1 11928 isumclim3 11934 bcxmas 12000 trireciplem 12011 geo2sum 12025 geo2lim 12027 geoisum1c 12031 cvgratnnlemseq 12037 mertenslemi1 12046 fprodsplitdc 12107 eftlub 12201 addsin 12253 subsin 12254 subcos 12258 qredeu 12619 nn0sqrtelqelz 12728 4sqlem15 12928 strslfv2d 13075 mulgaddcomlem 13682 conjghm 13813 dvexp 15385 tangtx 15512 logsqrt 15597 mpodvdsmulf1o 15664 lgsquad2lem1 15760 2sqlem8 15802 |
| Copyright terms: Public domain | W3C validator |