Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | |
3eqtr2d.2 | |
3eqtr2d.3 |
Ref | Expression |
---|---|
3eqtr2rd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 | |
2 | 3eqtr2d.2 | . . 3 | |
3 | 1, 2 | eqtr4d 2206 | . 2 |
4 | 3eqtr2d.3 | . 2 | |
5 | 3, 4 | eqtr2d 2204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: difinfsn 7073 nnnninfeq 7100 prarloclemlo 7443 recexgt0sr 7722 xp1d2m1eqxm1d2 9117 qnegmod 10312 modqeqmodmin 10337 faclbnd2 10663 cjmulval 10839 fsumsplit 11357 fzosump1 11367 isumclim3 11373 bcxmas 11439 trireciplem 11450 geo2sum 11464 geo2lim 11466 geoisum1c 11470 cvgratnnlemseq 11476 mertenslemi1 11485 fprodsplitdc 11546 eftlub 11640 addsin 11692 subsin 11693 subcos 11697 qredeu 12038 nn0sqrtelqelz 12147 strslfv2d 12445 dvexp 13390 tangtx 13474 logsqrt 13558 2sqlem8 13674 |
Copyright terms: Public domain | W3C validator |