| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2243 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: difinfsn 7228 nnnninfeq 7256 prarloclemlo 7642 recexgt0sr 7921 xp1d2m1eqxm1d2 9325 qnegmod 10551 modqeqmodmin 10576 faclbnd2 10924 cats1un 11212 cjmulval 11314 fsumsplit 11833 fzosump1 11843 isumclim3 11849 bcxmas 11915 trireciplem 11926 geo2sum 11940 geo2lim 11942 geoisum1c 11946 cvgratnnlemseq 11952 mertenslemi1 11961 fprodsplitdc 12022 eftlub 12116 addsin 12168 subsin 12169 subcos 12173 qredeu 12534 nn0sqrtelqelz 12643 4sqlem15 12843 strslfv2d 12990 mulgaddcomlem 13596 conjghm 13727 dvexp 15298 tangtx 15425 logsqrt 15510 mpodvdsmulf1o 15577 lgsquad2lem1 15673 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |