ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr2rd Unicode version

Theorem 3eqtr2rd 2228
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3eqtr2d.1  |-  ( ph  ->  A  =  B )
3eqtr2d.2  |-  ( ph  ->  C  =  B )
3eqtr2d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
3eqtr2rd  |-  ( ph  ->  D  =  A )

Proof of Theorem 3eqtr2rd
StepHypRef Expression
1 3eqtr2d.1 . . 3  |-  ( ph  ->  A  =  B )
2 3eqtr2d.2 . . 3  |-  ( ph  ->  C  =  B )
31, 2eqtr4d 2224 . 2  |-  ( ph  ->  A  =  C )
4 3eqtr2d.3 . 2  |-  ( ph  ->  C  =  D )
53, 4eqtr2d 2222 1  |-  ( ph  ->  D  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-4 1520  ax-17 1536  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-cleq 2181
This theorem is referenced by:  difinfsn  7116  nnnninfeq  7143  prarloclemlo  7510  recexgt0sr  7789  xp1d2m1eqxm1d2  9188  qnegmod  10386  modqeqmodmin  10411  faclbnd2  10739  cjmulval  10914  fsumsplit  11432  fzosump1  11442  isumclim3  11448  bcxmas  11514  trireciplem  11525  geo2sum  11539  geo2lim  11541  geoisum1c  11545  cvgratnnlemseq  11551  mertenslemi1  11560  fprodsplitdc  11621  eftlub  11715  addsin  11767  subsin  11768  subcos  11772  qredeu  12114  nn0sqrtelqelz  12223  strslfv2d  12522  mulgaddcomlem  13050  conjghm  13175  dvexp  14558  tangtx  14642  logsqrt  14726  2sqlem8  14853
  Copyright terms: Public domain W3C validator