| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2241 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: difinfsn 7202 nnnninfeq 7230 prarloclemlo 7607 recexgt0sr 7886 xp1d2m1eqxm1d2 9290 qnegmod 10514 modqeqmodmin 10539 faclbnd2 10887 cjmulval 11199 fsumsplit 11718 fzosump1 11728 isumclim3 11734 bcxmas 11800 trireciplem 11811 geo2sum 11825 geo2lim 11827 geoisum1c 11831 cvgratnnlemseq 11837 mertenslemi1 11846 fprodsplitdc 11907 eftlub 12001 addsin 12053 subsin 12054 subcos 12058 qredeu 12419 nn0sqrtelqelz 12528 4sqlem15 12728 strslfv2d 12875 mulgaddcomlem 13481 conjghm 13612 dvexp 15183 tangtx 15310 logsqrt 15395 mpodvdsmulf1o 15462 lgsquad2lem1 15558 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |