| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2232 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: difinfsn 7166 nnnninfeq 7194 prarloclemlo 7561 recexgt0sr 7840 xp1d2m1eqxm1d2 9244 qnegmod 10461 modqeqmodmin 10486 faclbnd2 10834 cjmulval 11053 fsumsplit 11572 fzosump1 11582 isumclim3 11588 bcxmas 11654 trireciplem 11665 geo2sum 11679 geo2lim 11681 geoisum1c 11685 cvgratnnlemseq 11691 mertenslemi1 11700 fprodsplitdc 11761 eftlub 11855 addsin 11907 subsin 11908 subcos 11912 qredeu 12265 nn0sqrtelqelz 12374 4sqlem15 12574 strslfv2d 12721 mulgaddcomlem 13275 conjghm 13406 dvexp 14947 tangtx 15074 logsqrt 15159 mpodvdsmulf1o 15226 lgsquad2lem1 15322 2sqlem8 15364 |
| Copyright terms: Public domain | W3C validator |