| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geoisum1c | GIF version | ||
| Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| geoisum1c | ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ) | |
| 3 | 1cnd 8087 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℂ) | |
| 4 | 3, 2 | subcld 8382 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ) |
| 5 | 1red 8086 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℝ) | |
| 6 | simp3 1001 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1) | |
| 7 | 2, 5, 6 | absltap 11791 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 # 1) |
| 8 | apsym 8678 | . . . . . 6 ⊢ ((𝑅 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑅 # 1 ↔ 1 # 𝑅)) | |
| 9 | 2, 3, 8 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝑅 # 1 ↔ 1 # 𝑅)) |
| 10 | 7, 9 | mpbid 147 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 # 𝑅) |
| 11 | 3, 2, 10 | subap0d 8716 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) # 0) |
| 12 | 1, 2, 4, 11 | divassapd 8898 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
| 13 | geoisum1 11801 | . . . 4 ⊢ ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) | |
| 14 | 13 | 3adant1 1017 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) |
| 15 | 14 | oveq2d 5959 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
| 16 | nnuz 9683 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 17 | 1zzd 9398 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ) | |
| 18 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 19 | simpl2 1003 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → 𝑅 ∈ ℂ) | |
| 20 | 18 | nnnn0d 9347 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
| 21 | 19, 20 | expcld 10816 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅↑𝑘) ∈ ℂ) |
| 22 | oveq2 5951 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝑅↑𝑛) = (𝑅↑𝑘)) | |
| 23 | eqid 2204 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) | |
| 24 | 22, 23 | fvmptg 5654 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ (𝑅↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
| 25 | 18, 21, 24 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
| 26 | nnnn0 9301 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 27 | 26 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
| 28 | 19, 27 | expcld 10816 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅↑𝑘) ∈ ℂ) |
| 29 | seqex 10592 | . . . 4 ⊢ seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ V | |
| 30 | 1nn0 9310 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 31 | 30 | a1i 9 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0) |
| 32 | elnnuz 9684 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
| 33 | 32, 25 | sylan2br 288 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
| 34 | 2, 6, 31, 33 | geolim2 11794 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅))) |
| 35 | climcl 11564 | . . . . 5 ⊢ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → ((𝑅↑1) / (1 − 𝑅)) ∈ ℂ) | |
| 36 | 34, 35 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝑅↑1) / (1 − 𝑅)) ∈ ℂ) |
| 37 | breldmg 4883 | . . . 4 ⊢ ((seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ V ∧ ((𝑅↑1) / (1 − 𝑅)) ∈ ℂ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅))) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) | |
| 38 | 29, 36, 34, 37 | mp3an2i 1354 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) |
| 39 | 16, 17, 25, 28, 38, 1 | isummulc2 11708 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘))) |
| 40 | 12, 15, 39 | 3eqtr2rd 2244 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 ↦ cmpt 4104 dom cdm 4674 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 1c1 7925 + caddc 7927 · cmul 7929 < clt 8106 − cmin 8242 # cap 8653 / cdiv 8744 ℕcn 9035 ℕ0cn0 9294 ℤ≥cuz 9647 seqcseq 10590 ↑cexp 10681 abscabs 11279 ⇝ cli 11560 Σcsu 11635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-sumdc 11636 |
| This theorem is referenced by: 0.999... 11803 |
| Copyright terms: Public domain | W3C validator |