ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcos GIF version

Theorem subcos 11381
Description: Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
subcos ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))

Proof of Theorem subcos
StepHypRef Expression
1 halfaddsubcl 8921 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ))
2 sincl 11340 . . . . 5 (((𝐴 + 𝐵) / 2) ∈ ℂ → (sin‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
3 sincl 11340 . . . . 5 (((𝐴𝐵) / 2) ∈ ℂ → (sin‘((𝐴𝐵) / 2)) ∈ ℂ)
4 mulcl 7715 . . . . 5 (((sin‘((𝐴 + 𝐵) / 2)) ∈ ℂ ∧ (sin‘((𝐴𝐵) / 2)) ∈ ℂ) → ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) ∈ ℂ)
52, 3, 4syl2an 287 . . . 4 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) ∈ ℂ)
61, 5syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) ∈ ℂ)
762timesd 8930 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) = (((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
8 cossub 11375 . . . . 5 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → (cos‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) = (((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
9 cosadd 11371 . . . . 5 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → (cos‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) = (((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
108, 9oveq12d 5760 . . . 4 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → ((cos‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) − (cos‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))) = ((((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) − (((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))))))
111, 10syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) − (cos‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))) = ((((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) − (((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))))))
12 coscl 11341 . . . . . 6 (((𝐴 + 𝐵) / 2) ∈ ℂ → (cos‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
13 coscl 11341 . . . . . 6 (((𝐴𝐵) / 2) ∈ ℂ → (cos‘((𝐴𝐵) / 2)) ∈ ℂ)
14 mulcl 7715 . . . . . 6 (((cos‘((𝐴 + 𝐵) / 2)) ∈ ℂ ∧ (cos‘((𝐴𝐵) / 2)) ∈ ℂ) → ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) ∈ ℂ)
1512, 13, 14syl2an 287 . . . . 5 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) ∈ ℂ)
161, 15syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) ∈ ℂ)
1716, 6, 6pnncand 8080 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) − (((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))))) = (((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
1811, 17eqtrd 2150 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) − (cos‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))) = (((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
19 halfaddsub 8922 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
2019simprd 113 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵)
2120fveq2d 5393 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) = (cos‘𝐵))
2219simpld 111 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴)
2322fveq2d 5393 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) = (cos‘𝐴))
2421, 23oveq12d 5760 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) − (cos‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))) = ((cos‘𝐵) − (cos‘𝐴)))
257, 18, 243eqtr2rd 2157 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  cfv 5093  (class class class)co 5742  cc 7586   + caddc 7591   · cmul 7593  cmin 7901   / cdiv 8400  2c2 8739  sincsin 11277  cosccos 11278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-disj 3877  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-frec 6256  df-1o 6281  df-oadd 6285  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-ico 9645  df-fz 9759  df-fzo 9888  df-seqfrec 10187  df-exp 10261  df-fac 10440  df-bc 10462  df-ihash 10490  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-clim 11016  df-sumdc 11091  df-ef 11281  df-sin 11283  df-cos 11284
This theorem is referenced by:  cosordlem  12857
  Copyright terms: Public domain W3C validator