Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3t3e9 | GIF version |
Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3t3e9 | ⊢ (3 · 3) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8917 | . . 3 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5853 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
3 | 3cn 8932 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | 2cn 8928 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7846 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | adddii 7909 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
7 | 3t2e6 9013 | . . . . 5 ⊢ (3 · 2) = 6 | |
8 | 3t1e3 9012 | . . . . 5 ⊢ (3 · 1) = 3 | |
9 | 7, 8 | oveq12i 5854 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
10 | 6, 9 | eqtri 2186 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
11 | 6p3e9 9007 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 10, 11 | eqtri 2186 | . 2 ⊢ (3 · (2 + 1)) = 9 |
13 | 2, 12 | eqtri 2186 | 1 ⊢ (3 · 3) = 9 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 1c1 7754 + caddc 7756 · cmul 7758 2c2 8908 3c3 8909 6c6 8912 9c9 8915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 |
This theorem is referenced by: sq3 10551 3dvdsdec 11802 3dvds2dec 11803 lgsdir2lem5 13573 |
Copyright terms: Public domain | W3C validator |