![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3t3e9 | GIF version |
Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3t3e9 | ⊢ (3 · 3) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 9042 | . . 3 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5929 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
3 | 3cn 9057 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | 2cn 9053 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7965 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | adddii 8029 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
7 | 3t2e6 9138 | . . . . 5 ⊢ (3 · 2) = 6 | |
8 | 3t1e3 9137 | . . . . 5 ⊢ (3 · 1) = 3 | |
9 | 7, 8 | oveq12i 5930 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
10 | 6, 9 | eqtri 2214 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
11 | 6p3e9 9132 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 10, 11 | eqtri 2214 | . 2 ⊢ (3 · (2 + 1)) = 9 |
13 | 2, 12 | eqtri 2214 | 1 ⊢ (3 · 3) = 9 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 1c1 7873 + caddc 7875 · cmul 7877 2c2 9033 3c3 9034 6c6 9037 9c9 9040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 |
This theorem is referenced by: sq3 10707 3dvdsdec 12006 3dvds2dec 12007 lgsdir2lem5 15148 |
Copyright terms: Public domain | W3C validator |