| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3t3e9 | GIF version | ||
| Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3t3e9 | ⊢ (3 · 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9170 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 6012 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
| 3 | 3cn 9185 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 9181 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 8092 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | adddii 8156 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
| 7 | 3t2e6 9267 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 8 | 3t1e3 9266 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 9 | 7, 8 | oveq12i 6013 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
| 10 | 6, 9 | eqtri 2250 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
| 11 | 6p3e9 9261 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 10, 11 | eqtri 2250 | . 2 ⊢ (3 · (2 + 1)) = 9 |
| 13 | 2, 12 | eqtri 2250 | 1 ⊢ (3 · 3) = 9 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6001 1c1 8000 + caddc 8002 · cmul 8004 2c2 9161 3c3 9162 6c6 9165 9c9 9168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-1rid 8106 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 |
| This theorem is referenced by: sq3 10858 3dvds 12375 3dvdsdec 12376 3dvds2dec 12377 lgsdir2lem5 15711 |
| Copyright terms: Public domain | W3C validator |