![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt6 | GIF version |
Description: 1 is less than 6. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
1lt6 | ⊢ 1 < 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 8648 | . 2 ⊢ 1 < 2 | |
2 | 2lt6 8661 | . 2 ⊢ 2 < 6 | |
3 | 1re 7550 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 8555 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 6re 8566 | . . 3 ⊢ 6 ∈ ℝ | |
6 | 3, 4, 5 | lttri 7652 | . 2 ⊢ ((1 < 2 ∧ 2 < 6) → 1 < 6) |
7 | 1, 2, 6 | mp2an 418 | 1 ⊢ 1 < 6 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3853 1c1 7414 < clt 7585 2c2 8536 6c6 8540 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-addcom 7508 ax-addass 7510 ax-i2m1 7513 ax-0lt1 7514 ax-0id 7516 ax-rnegex 7517 ax-pre-lttrn 7522 ax-pre-ltadd 7524 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2624 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-xp 4460 df-iota 4995 df-fv 5038 df-ov 5671 df-pnf 7587 df-mnf 7588 df-ltxr 7590 df-2 8544 df-3 8545 df-4 8546 df-5 8547 df-6 8548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |