![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resin4p | GIF version |
Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
efi4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
resin4p | ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resinval 11858 | . 2 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | |
2 | recn 8005 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | efi4p.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) | |
4 | 3 | efi4p 11860 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
6 | 5 | fveq2d 5558 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
7 | 1re 8018 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | resqcl 10678 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
9 | 8 | rehalfcld 9229 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ) |
10 | resubcl 8283 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ) | |
11 | 7, 9, 10 | sylancr 414 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ) |
12 | 11 | recnd 8048 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ) |
13 | ax-icn 7967 | . . . . . 6 ⊢ i ∈ ℂ | |
14 | 3nn0 9258 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
15 | reexpcl 10627 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ) | |
16 | 14, 15 | mpan2 425 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ) |
17 | 6re 9063 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ | |
18 | 6pos 9083 | . . . . . . . . . . 11 ⊢ 0 < 6 | |
19 | 17, 18 | gt0ap0ii 8647 | . . . . . . . . . 10 ⊢ 6 # 0 |
20 | redivclap 8750 | . . . . . . . . . 10 ⊢ (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 # 0) → ((𝐴↑3) / 6) ∈ ℝ) | |
21 | 17, 19, 20 | mp3an23 1340 | . . . . . . . . 9 ⊢ ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
22 | 16, 21 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
23 | resubcl 8283 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) | |
24 | 22, 23 | mpdan 421 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) |
25 | 24 | recnd 8048 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) |
26 | mulcl 7999 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) | |
27 | 13, 25, 26 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) |
28 | 12, 27 | addcld 8039 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ) |
29 | mulcl 7999 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
30 | 13, 2, 29 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
31 | 4nn0 9259 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
32 | 3 | eftlcl 11831 | . . . . 5 ⊢ (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
33 | 30, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
34 | 28, 33 | imaddd 11104 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
35 | 11, 24 | crimd 11121 | . . . 4 ⊢ (𝐴 ∈ ℝ → (ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (𝐴 − ((𝐴↑3) / 6))) |
36 | 35 | oveq1d 5933 | . . 3 ⊢ (𝐴 ∈ ℝ → ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
37 | 6, 34, 36 | 3eqtrd 2230 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
38 | 1, 37 | eqtrd 2226 | 1 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 1c1 7873 ici 7874 + caddc 7875 · cmul 7877 − cmin 8190 # cap 8600 / cdiv 8691 2c2 9033 3c3 9034 4c4 9035 6c6 9037 ℕ0cn0 9240 ℤ≥cuz 9592 ↑cexp 10609 !cfa 10796 ℑcim 10985 Σcsu 11496 expce 11785 sincsin 11787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-ico 9960 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 df-sin 11793 |
This theorem is referenced by: sin01bnd 11900 |
Copyright terms: Public domain | W3C validator |