| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resin4p | GIF version | ||
| Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| efi4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| resin4p | ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resinval 11899 | . 2 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | |
| 2 | recn 8031 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | efi4p.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) | |
| 4 | 3 | efi4p 11901 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| 5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| 6 | 5 | fveq2d 5565 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 7 | 1re 8044 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 8 | resqcl 10718 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
| 9 | 8 | rehalfcld 9257 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ) |
| 10 | resubcl 8309 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ) | |
| 11 | 7, 9, 10 | sylancr 414 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ) |
| 12 | 11 | recnd 8074 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ) |
| 13 | ax-icn 7993 | . . . . . 6 ⊢ i ∈ ℂ | |
| 14 | 3nn0 9286 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
| 15 | reexpcl 10667 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ) | |
| 16 | 14, 15 | mpan2 425 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ) |
| 17 | 6re 9090 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ | |
| 18 | 6pos 9110 | . . . . . . . . . . 11 ⊢ 0 < 6 | |
| 19 | 17, 18 | gt0ap0ii 8674 | . . . . . . . . . 10 ⊢ 6 # 0 |
| 20 | redivclap 8777 | . . . . . . . . . 10 ⊢ (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 # 0) → ((𝐴↑3) / 6) ∈ ℝ) | |
| 21 | 17, 19, 20 | mp3an23 1340 | . . . . . . . . 9 ⊢ ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
| 22 | 16, 21 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
| 23 | resubcl 8309 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) | |
| 24 | 22, 23 | mpdan 421 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) |
| 25 | 24 | recnd 8074 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) |
| 26 | mulcl 8025 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) | |
| 27 | 13, 25, 26 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) |
| 28 | 12, 27 | addcld 8065 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ) |
| 29 | mulcl 8025 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 30 | 13, 2, 29 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 31 | 4nn0 9287 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 32 | 3 | eftlcl 11872 | . . . . 5 ⊢ (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
| 33 | 30, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
| 34 | 28, 33 | imaddd 11144 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 35 | 11, 24 | crimd 11161 | . . . 4 ⊢ (𝐴 ∈ ℝ → (ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (𝐴 − ((𝐴↑3) / 6))) |
| 36 | 35 | oveq1d 5940 | . . 3 ⊢ (𝐴 ∈ ℝ → ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 37 | 6, 34, 36 | 3eqtrd 2233 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 38 | 1, 37 | eqtrd 2229 | 1 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ↦ cmpt 4095 ‘cfv 5259 (class class class)co 5925 ℂcc 7896 ℝcr 7897 0cc0 7898 1c1 7899 ici 7900 + caddc 7901 · cmul 7903 − cmin 8216 # cap 8627 / cdiv 8718 2c2 9060 3c3 9061 4c4 9062 6c6 9064 ℕ0cn0 9268 ℤ≥cuz 9620 ↑cexp 10649 !cfa 10836 ℑcim 11025 Σcsu 11537 expce 11826 sincsin 11828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-ico 9988 df-fz 10103 df-fzo 10237 df-seqfrec 10559 df-exp 10650 df-fac 10837 df-ihash 10887 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-clim 11463 df-sumdc 11538 df-ef 11832 df-sin 11834 |
| This theorem is referenced by: sin01bnd 11941 |
| Copyright terms: Public domain | W3C validator |