ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recos4p GIF version

Theorem recos4p 11972
Description: Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
recos4p (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem recos4p
StepHypRef Expression
1 recosval 11969 . 2 (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴))))
2 recn 8057 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 efi4p.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
43efi4p 11970 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
52, 4syl 14 . . . 4 (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
65fveq2d 5579 . . 3 (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
7 1re 8070 . . . . . . 7 1 ∈ ℝ
8 resqcl 10750 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
98rehalfcld 9283 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ)
10 resubcl 8335 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
117, 9, 10sylancr 414 . . . . . 6 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1211recnd 8100 . . . . 5 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
13 ax-icn 8019 . . . . . 6 i ∈ ℂ
14 3nn0 9312 . . . . . . . . . 10 3 ∈ ℕ0
15 reexpcl 10699 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
1614, 15mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ)
17 6re 9116 . . . . . . . . . 10 6 ∈ ℝ
18 6pos 9136 . . . . . . . . . . 11 0 < 6
1917, 18gt0ap0ii 8700 . . . . . . . . . 10 6 # 0
20 redivclap 8803 . . . . . . . . . 10 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 # 0) → ((𝐴↑3) / 6) ∈ ℝ)
2117, 19, 20mp3an23 1341 . . . . . . . . 9 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
2216, 21syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
23 resubcl 8335 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2422, 23mpdan 421 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2524recnd 8100 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
26 mulcl 8051 . . . . . 6 ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2713, 25, 26sylancr 414 . . . . 5 (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2812, 27addcld 8091 . . . 4 (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ)
29 mulcl 8051 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
3013, 2, 29sylancr 414 . . . . 5 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
31 4nn0 9313 . . . . 5 4 ∈ ℕ0
323eftlcl 11941 . . . . 5 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3330, 31, 32sylancl 413 . . . 4 (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3428, 33readdd 11212 . . 3 (𝐴 ∈ ℝ → (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
3511, 24crred 11229 . . . 4 (𝐴 ∈ ℝ → (ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (1 − ((𝐴↑2) / 2)))
3635oveq1d 5958 . . 3 (𝐴 ∈ ℝ → ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
376, 34, 363eqtrd 2241 . 2 (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
381, 37eqtrd 2237 1 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175   class class class wbr 4043  cmpt 4104  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924  1c1 7925  ici 7926   + caddc 7927   · cmul 7929  cmin 8242   # cap 8653   / cdiv 8744  2c2 9086  3c3 9087  4c4 9088  6c6 9090  0cn0 9294  cuz 9647  cexp 10681  !cfa 10868  cre 11093  Σcsu 11606  expce 11895  cosccos 11898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-ico 10015  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607  df-ef 11901  df-cos 11904
This theorem is referenced by:  cos01bnd  12011
  Copyright terms: Public domain W3C validator