![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recos4p | GIF version |
Description: Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
efi4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
recos4p | ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recosval 11070 | . 2 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | |
2 | recn 7538 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | efi4p.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) | |
4 | 3 | efi4p 11071 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
6 | 5 | fveq2d 5324 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
7 | 1re 7550 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | resqcl 10085 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
9 | 8 | rehalfcld 8725 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ) |
10 | resubcl 7809 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ) | |
11 | 7, 9, 10 | sylancr 406 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ) |
12 | 11 | recnd 7579 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ) |
13 | ax-icn 7503 | . . . . . 6 ⊢ i ∈ ℂ | |
14 | 3nn0 8754 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
15 | reexpcl 10035 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ) | |
16 | 14, 15 | mpan2 417 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ) |
17 | 6re 8566 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ | |
18 | 6pos 8586 | . . . . . . . . . . 11 ⊢ 0 < 6 | |
19 | 17, 18 | gt0ap0ii 8167 | . . . . . . . . . 10 ⊢ 6 # 0 |
20 | redivclap 8261 | . . . . . . . . . 10 ⊢ (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 # 0) → ((𝐴↑3) / 6) ∈ ℝ) | |
21 | 17, 19, 20 | mp3an23 1266 | . . . . . . . . 9 ⊢ ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
22 | 16, 21 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
23 | resubcl 7809 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) | |
24 | 22, 23 | mpdan 413 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) |
25 | 24 | recnd 7579 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) |
26 | mulcl 7532 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) | |
27 | 13, 25, 26 | sylancr 406 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) |
28 | 12, 27 | addcld 7570 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ) |
29 | mulcl 7532 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
30 | 13, 2, 29 | sylancr 406 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
31 | 4nn0 8755 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
32 | 3 | eftlcl 11041 | . . . . 5 ⊢ (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
33 | 30, 31, 32 | sylancl 405 | . . . 4 ⊢ (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
34 | 28, 33 | readdd 10456 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
35 | 11, 24 | crred 10473 | . . . 4 ⊢ (𝐴 ∈ ℝ → (ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (1 − ((𝐴↑2) / 2))) |
36 | 35 | oveq1d 5683 | . . 3 ⊢ (𝐴 ∈ ℝ → ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
37 | 6, 34, 36 | 3eqtrd 2125 | . 2 ⊢ (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
38 | 1, 37 | eqtrd 2121 | 1 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 class class class wbr 3853 ↦ cmpt 3907 ‘cfv 5030 (class class class)co 5668 ℂcc 7411 ℝcr 7412 0cc0 7413 1c1 7414 ici 7415 + caddc 7416 · cmul 7418 − cmin 7716 # cap 8121 / cdiv 8202 2c2 8536 3c3 8537 4c4 8538 6c6 8540 ℕ0cn0 8736 ℤ≥cuz 9082 ↑cexp 10017 !cfa 10196 ℜcre 10337 Σcsu 10805 expce 10995 cosccos 10998 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3962 ax-sep 3965 ax-nul 3973 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-iinf 4418 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-mulrcl 7507 ax-addcom 7508 ax-mulcom 7509 ax-addass 7510 ax-mulass 7511 ax-distr 7512 ax-i2m1 7513 ax-0lt1 7514 ax-1rid 7515 ax-0id 7516 ax-rnegex 7517 ax-precex 7518 ax-cnre 7519 ax-pre-ltirr 7520 ax-pre-ltwlin 7521 ax-pre-lttrn 7522 ax-pre-apti 7523 ax-pre-ltadd 7524 ax-pre-mulgt0 7525 ax-pre-mulext 7526 ax-arch 7527 ax-caucvg 7528 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2624 df-sbc 2844 df-csb 2937 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-nul 3290 df-if 3400 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-iun 3740 df-br 3854 df-opab 3908 df-mpt 3909 df-tr 3945 df-id 4131 df-po 4134 df-iso 4135 df-iord 4204 df-on 4206 df-ilim 4207 df-suc 4209 df-iom 4421 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-f1 5035 df-fo 5036 df-f1o 5037 df-fv 5038 df-isom 5039 df-riota 5624 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-1st 5927 df-2nd 5928 df-recs 6086 df-irdg 6151 df-frec 6172 df-1o 6197 df-oadd 6201 df-er 6308 df-en 6514 df-dom 6515 df-fin 6516 df-pnf 7587 df-mnf 7588 df-xr 7589 df-ltxr 7590 df-le 7591 df-sub 7718 df-neg 7719 df-reap 8115 df-ap 8122 df-div 8203 df-inn 8486 df-2 8544 df-3 8545 df-4 8546 df-5 8547 df-6 8548 df-n0 8737 df-z 8814 df-uz 9083 df-q 9168 df-rp 9198 df-ico 9375 df-fz 9488 df-fzo 9617 df-iseq 9916 df-seq3 9917 df-exp 10018 df-fac 10197 df-ihash 10247 df-cj 10339 df-re 10340 df-im 10341 df-rsqrt 10494 df-abs 10495 df-clim 10730 df-isum 10806 df-ef 11001 df-cos 11004 |
This theorem is referenced by: cos01bnd 11112 |
Copyright terms: Public domain | W3C validator |