| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recos4p | GIF version | ||
| Description: Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| efi4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| recos4p | ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recosval 11881 | . 2 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | |
| 2 | recn 8012 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | efi4p.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) | |
| 4 | 3 | efi4p 11882 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| 5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| 6 | 5 | fveq2d 5562 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 7 | 1re 8025 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 8 | resqcl 10699 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
| 9 | 8 | rehalfcld 9238 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ) |
| 10 | resubcl 8290 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ) | |
| 11 | 7, 9, 10 | sylancr 414 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ) |
| 12 | 11 | recnd 8055 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ) |
| 13 | ax-icn 7974 | . . . . . 6 ⊢ i ∈ ℂ | |
| 14 | 3nn0 9267 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
| 15 | reexpcl 10648 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ) | |
| 16 | 14, 15 | mpan2 425 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ) |
| 17 | 6re 9071 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ | |
| 18 | 6pos 9091 | . . . . . . . . . . 11 ⊢ 0 < 6 | |
| 19 | 17, 18 | gt0ap0ii 8655 | . . . . . . . . . 10 ⊢ 6 # 0 |
| 20 | redivclap 8758 | . . . . . . . . . 10 ⊢ (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 # 0) → ((𝐴↑3) / 6) ∈ ℝ) | |
| 21 | 17, 19, 20 | mp3an23 1340 | . . . . . . . . 9 ⊢ ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
| 22 | 16, 21 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
| 23 | resubcl 8290 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) | |
| 24 | 22, 23 | mpdan 421 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) |
| 25 | 24 | recnd 8055 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) |
| 26 | mulcl 8006 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) | |
| 27 | 13, 25, 26 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) |
| 28 | 12, 27 | addcld 8046 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ) |
| 29 | mulcl 8006 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 30 | 13, 2, 29 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 31 | 4nn0 9268 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 32 | 3 | eftlcl 11853 | . . . . 5 ⊢ (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
| 33 | 30, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
| 34 | 28, 33 | readdd 11124 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 35 | 11, 24 | crred 11141 | . . . 4 ⊢ (𝐴 ∈ ℝ → (ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (1 − ((𝐴↑2) / 2))) |
| 36 | 35 | oveq1d 5937 | . . 3 ⊢ (𝐴 ∈ ℝ → ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 37 | 6, 34, 36 | 3eqtrd 2233 | . 2 ⊢ (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 38 | 1, 37 | eqtrd 2229 | 1 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 1c1 7880 ici 7881 + caddc 7882 · cmul 7884 − cmin 8197 # cap 8608 / cdiv 8699 2c2 9041 3c3 9042 4c4 9043 6c6 9045 ℕ0cn0 9249 ℤ≥cuz 9601 ↑cexp 10630 !cfa 10817 ℜcre 11005 Σcsu 11518 expce 11807 cosccos 11810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-cos 11816 |
| This theorem is referenced by: cos01bnd 11923 |
| Copyright terms: Public domain | W3C validator |