| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8t8e64 | GIF version | ||
| Description: 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8t8e64 | ⊢ (8 · 8) = ;64 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn0 9272 | . 2 ⊢ 8 ∈ ℕ0 | |
| 2 | 7nn0 9271 | . 2 ⊢ 7 ∈ ℕ0 | |
| 3 | df-8 9055 | . 2 ⊢ 8 = (7 + 1) | |
| 4 | 8t7e56 9576 | . 2 ⊢ (8 · 7) = ;56 | |
| 5 | 5nn0 9269 | . . 3 ⊢ 5 ∈ ℕ0 | |
| 6 | 6nn0 9270 | . . 3 ⊢ 6 ∈ ℕ0 | |
| 7 | eqid 2196 | . . 3 ⊢ ;56 = ;56 | |
| 8 | 5p1e6 9128 | . . 3 ⊢ (5 + 1) = 6 | |
| 9 | 4nn0 9268 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 10 | 1 | nn0cni 9261 | . . . 4 ⊢ 8 ∈ ℂ |
| 11 | 6 | nn0cni 9261 | . . . 4 ⊢ 6 ∈ ℂ |
| 12 | 8p6e14 9540 | . . . 4 ⊢ (8 + 6) = ;14 | |
| 13 | 10, 11, 12 | addcomli 8171 | . . 3 ⊢ (6 + 8) = ;14 |
| 14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 9517 | . 2 ⊢ (;56 + 8) = ;64 |
| 15 | 1, 2, 3, 4, 14 | 4t3lem 9553 | 1 ⊢ (8 · 8) = ;64 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5922 1c1 7880 · cmul 7884 4c4 9043 5c5 9044 6c6 9045 7c7 9046 8c8 9047 ;cdc 9457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-dec 9458 |
| This theorem is referenced by: 2exp6 12602 |
| Copyright terms: Public domain | W3C validator |