ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n2dvdsm1 GIF version

Theorem n2dvdsm1 11931
Description: 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.)
Assertion
Ref Expression
n2dvdsm1 ¬ 2 ∥ -1

Proof of Theorem n2dvdsm1
StepHypRef Expression
1 z0even 11929 . . 3 2 ∥ 0
2 ax-1cn 7917 . . . 4 1 ∈ ℂ
3 neg1cn 9037 . . . 4 -1 ∈ ℂ
4 1pneg1e0 9043 . . . 4 (1 + -1) = 0
52, 3, 4addcomli 8115 . . 3 (-1 + 1) = 0
61, 5breqtrri 4042 . 2 2 ∥ (-1 + 1)
7 neg1z 9298 . . 3 -1 ∈ ℤ
8 oddp1even 11894 . . 3 (-1 ∈ ℤ → (¬ 2 ∥ -1 ↔ 2 ∥ (-1 + 1)))
97, 8ax-mp 5 . 2 (¬ 2 ∥ -1 ↔ 2 ∥ (-1 + 1))
106, 9mpbir 146 1 ¬ 2 ∥ -1
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wcel 2158   class class class wbr 4015  (class class class)co 5888  0cc0 7824  1c1 7825   + caddc 7827  -cneg 8142  2c2 8983  cz 9266  cdvds 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-xor 1386  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-dvds 11808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator