| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > n2dvdsm1 | GIF version | ||
| Description: 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.) |
| Ref | Expression |
|---|---|
| n2dvdsm1 | ⊢ ¬ 2 ∥ -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | z0even 12255 | . . 3 ⊢ 2 ∥ 0 | |
| 2 | ax-1cn 8020 | . . . 4 ⊢ 1 ∈ ℂ | |
| 3 | neg1cn 9143 | . . . 4 ⊢ -1 ∈ ℂ | |
| 4 | 1pneg1e0 9149 | . . . 4 ⊢ (1 + -1) = 0 | |
| 5 | 2, 3, 4 | addcomli 8219 | . . 3 ⊢ (-1 + 1) = 0 |
| 6 | 1, 5 | breqtrri 4072 | . 2 ⊢ 2 ∥ (-1 + 1) |
| 7 | neg1z 9406 | . . 3 ⊢ -1 ∈ ℤ | |
| 8 | oddp1even 12220 | . . 3 ⊢ (-1 ∈ ℤ → (¬ 2 ∥ -1 ↔ 2 ∥ (-1 + 1))) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (¬ 2 ∥ -1 ↔ 2 ∥ (-1 + 1)) |
| 10 | 6, 9 | mpbir 146 | 1 ⊢ ¬ 2 ∥ -1 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∈ wcel 2176 class class class wbr 4045 (class class class)co 5946 0cc0 7927 1c1 7928 + caddc 7930 -cneg 8246 2c2 9089 ℤcz 9374 ∥ cdvds 12131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-n0 9298 df-z 9375 df-dvds 12132 |
| This theorem is referenced by: bitsfzo 12299 |
| Copyright terms: Public domain | W3C validator |