Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 7t4e28 | GIF version |
Description: 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7t4e28 | ⊢ (7 · 4) = ;28 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn0 9169 | . 2 ⊢ 7 ∈ ℕ0 | |
2 | 3nn0 9165 | . 2 ⊢ 3 ∈ ℕ0 | |
3 | df-4 8951 | . 2 ⊢ 4 = (3 + 1) | |
4 | 7t3e21 9464 | . 2 ⊢ (7 · 3) = ;21 | |
5 | 2nn0 9164 | . . 3 ⊢ 2 ∈ ℕ0 | |
6 | 1nn0 9163 | . . 3 ⊢ 1 ∈ ℕ0 | |
7 | eqid 2175 | . . 3 ⊢ ;21 = ;21 | |
8 | 7cn 8974 | . . . 4 ⊢ 7 ∈ ℂ | |
9 | ax-1cn 7879 | . . . 4 ⊢ 1 ∈ ℂ | |
10 | 7p1e8 9029 | . . . 4 ⊢ (7 + 1) = 8 | |
11 | 8, 9, 10 | addcomli 8076 | . . 3 ⊢ (1 + 7) = 8 |
12 | 5, 6, 1, 7, 11 | decaddi 9414 | . 2 ⊢ (;21 + 7) = ;28 |
13 | 1, 2, 3, 4, 12 | 4t3lem 9451 | 1 ⊢ (7 · 4) = ;28 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5865 1c1 7787 · cmul 7791 2c2 8941 3c3 8942 4c4 8943 7c7 8946 8c8 8947 ;cdc 9355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 df-7 8954 df-8 8955 df-9 8956 df-n0 9148 df-dec 9356 |
This theorem is referenced by: 7t5e35 9466 |
Copyright terms: Public domain | W3C validator |