ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7t7e49 GIF version

Theorem 7t7e49 9564
Description: 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7t7e49 (7 · 7) = 49

Proof of Theorem 7t7e49
StepHypRef Expression
1 7nn0 9265 . 2 7 ∈ ℕ0
2 6nn0 9264 . 2 6 ∈ ℕ0
3 df-7 9048 . 2 7 = (6 + 1)
4 7t6e42 9563 . 2 (7 · 6) = 42
5 4nn0 9262 . . 3 4 ∈ ℕ0
6 2nn0 9260 . . 3 2 ∈ ℕ0
7 eqid 2193 . . 3 42 = 42
8 7cn 9068 . . . 4 7 ∈ ℂ
9 2cn 9055 . . . 4 2 ∈ ℂ
10 7p2e9 9136 . . . 4 (7 + 2) = 9
118, 9, 10addcomli 8166 . . 3 (2 + 7) = 9
125, 6, 1, 7, 11decaddi 9510 . 2 (42 + 7) = 49
131, 2, 3, 4, 124t3lem 9547 1 (7 · 7) = 49
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5919   · cmul 7879  2c2 9035  4c4 9037  6c6 9039  7c7 9040  9c9 9042  cdc 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-dec 9452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator