ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2z GIF version

Theorem peano2z 9428
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)

Proof of Theorem peano2z
StepHypRef Expression
1 zre 9396 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 1red 8107 . . 3 (𝑁 ∈ ℤ → 1 ∈ ℝ)
31, 2readdcld 8122 . 2 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
4 elznn0nn 9406 . . . . 5 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
54biimpi 120 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
61biantrurd 305 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ ↔ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
76orbi2d 792 . . . 4 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))))
85, 7mpbird 167 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ))
9 peano2nn0 9355 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
109a1i 9 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0))
111adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
12 1red 8107 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℝ)
1311, 12readdcld 8122 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℝ)
1413renegcld 8472 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℝ)
1514recnd 8121 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℂ)
1611recnd 8121 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
17 1cnd 8108 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℂ)
1816, 17negdid 8416 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) = (-𝑁 + -1))
1918oveq1d 5972 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = ((-𝑁 + -1) + 1))
2016negcld 8390 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℂ)
21 neg1cn 9161 . . . . . . . . . . . 12 -1 ∈ ℂ
2221a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -1 ∈ ℂ)
2320, 22, 17addassd 8115 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → ((-𝑁 + -1) + 1) = (-𝑁 + (-1 + 1)))
2419, 23eqtrd 2239 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + (-1 + 1)))
25 ax-1cn 8038 . . . . . . . . . . 11 1 ∈ ℂ
26 1pneg1e0 9167 . . . . . . . . . . 11 (1 + -1) = 0
2725, 21, 26addcomli 8237 . . . . . . . . . 10 (-1 + 1) = 0
2827oveq2i 5968 . . . . . . . . 9 (-𝑁 + (-1 + 1)) = (-𝑁 + 0)
2924, 28eqtrdi 2255 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + 0))
3020addridd 8241 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-𝑁 + 0) = -𝑁)
3129, 30eqtrd 2239 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = -𝑁)
32 simpr 110 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
3331, 32eqeltrd 2283 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) ∈ ℕ)
34 elnn0nn 9357 . . . . . 6 (-(𝑁 + 1) ∈ ℕ0 ↔ (-(𝑁 + 1) ∈ ℂ ∧ (-(𝑁 + 1) + 1) ∈ ℕ))
3515, 33, 34sylanbrc 417 . . . . 5 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℕ0)
3635ex 115 . . . 4 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → -(𝑁 + 1) ∈ ℕ0))
3710, 36orim12d 788 . . 3 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
388, 37mpd 13 . 2 (𝑁 ∈ ℤ → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0))
39 elznn0 9407 . 2 ((𝑁 + 1) ∈ ℤ ↔ ((𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
403, 38, 39sylanbrc 417 1 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  wcel 2177  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945  1c1 7946   + caddc 7948  -cneg 8264  cn 9056  0cn0 9315  cz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393
This theorem is referenced by:  zaddcllempos  9429  peano2zm  9430  zleltp1  9448  btwnnz  9487  peano2uz2  9500  uzind  9504  uzind2  9505  peano2zd  9518  eluzp1m1  9692  eluzp1p1  9694  peano2uz  9724  zltaddlt1le  10149  fzp1disj  10222  elfzp1b  10239  fzneuz  10243  fzp1nel  10246  fzval3  10355  fzossfzop1  10363  rebtwn2zlemstep  10417  flhalf  10467  frec2uzsucd  10568  zesq  10825  hashfzp1  10991  odd2np1lem  12258  odd2np1  12259  mulsucdiv2z  12271  oddp1d2  12276  zob  12277  ltoddhalfle  12279  fldivp1  12746  lgsdir2lem2  15581
  Copyright terms: Public domain W3C validator