ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2z GIF version

Theorem peano2z 8756
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)

Proof of Theorem peano2z
StepHypRef Expression
1 zre 8724 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 1red 7482 . . 3 (𝑁 ∈ ℤ → 1 ∈ ℝ)
31, 2readdcld 7496 . 2 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
4 elznn0nn 8734 . . . . 5 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
54biimpi 118 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
61biantrurd 299 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ ↔ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
76orbi2d 739 . . . 4 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))))
85, 7mpbird 165 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ))
9 peano2nn0 8683 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
109a1i 9 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0))
111adantr 270 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
12 1red 7482 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℝ)
1311, 12readdcld 7496 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℝ)
1413renegcld 7837 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℝ)
1514recnd 7495 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℂ)
1611recnd 7495 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
17 1cnd 7483 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℂ)
1816, 17negdid 7785 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) = (-𝑁 + -1))
1918oveq1d 5649 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = ((-𝑁 + -1) + 1))
2016negcld 7759 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℂ)
21 neg1cn 8498 . . . . . . . . . . . 12 -1 ∈ ℂ
2221a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -1 ∈ ℂ)
2320, 22, 17addassd 7489 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → ((-𝑁 + -1) + 1) = (-𝑁 + (-1 + 1)))
2419, 23eqtrd 2120 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + (-1 + 1)))
25 ax-1cn 7417 . . . . . . . . . . 11 1 ∈ ℂ
26 1pneg1e0 8504 . . . . . . . . . . 11 (1 + -1) = 0
2725, 21, 26addcomli 7606 . . . . . . . . . 10 (-1 + 1) = 0
2827oveq2i 5645 . . . . . . . . 9 (-𝑁 + (-1 + 1)) = (-𝑁 + 0)
2924, 28syl6eq 2136 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + 0))
3020addid1d 7610 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-𝑁 + 0) = -𝑁)
3129, 30eqtrd 2120 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = -𝑁)
32 simpr 108 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
3331, 32eqeltrd 2164 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) ∈ ℕ)
34 elnn0nn 8685 . . . . . 6 (-(𝑁 + 1) ∈ ℕ0 ↔ (-(𝑁 + 1) ∈ ℂ ∧ (-(𝑁 + 1) + 1) ∈ ℕ))
3515, 33, 34sylanbrc 408 . . . . 5 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℕ0)
3635ex 113 . . . 4 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → -(𝑁 + 1) ∈ ℕ0))
3710, 36orim12d 735 . . 3 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
388, 37mpd 13 . 2 (𝑁 ∈ ℤ → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0))
39 elznn0 8735 . 2 ((𝑁 + 1) ∈ ℤ ↔ ((𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
403, 38, 39sylanbrc 408 1 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 664  wcel 1438  (class class class)co 5634  cc 7327  cr 7328  0cc0 7329  1c1 7330   + caddc 7332  -cneg 7633  cn 8394  0cn0 8643  cz 8720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721
This theorem is referenced by:  zaddcllempos  8757  peano2zm  8758  zleltp1  8775  btwnnz  8810  peano2uz2  8823  uzind  8827  uzind2  8828  peano2zd  8841  eluzp1m1  9011  eluzp1p1  9013  peano2uz  9040  zltaddlt1le  9392  fzp1disj  9461  elfzp1b  9478  fzneuz  9482  fzp1nel  9485  fzval3  9580  fzossfzop1  9588  rebtwn2zlemstep  9629  flhalf  9674  frec2uzsucd  9773  zesq  10037  hashfzp1  10197  odd2np1lem  10965  odd2np1  10966  mulsucdiv2z  10978  oddp1d2  10983  zob  10984  ltoddhalfle  10986
  Copyright terms: Public domain W3C validator