ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2z GIF version

Theorem peano2z 9291
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)

Proof of Theorem peano2z
StepHypRef Expression
1 zre 9259 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 1red 7974 . . 3 (𝑁 ∈ ℤ → 1 ∈ ℝ)
31, 2readdcld 7989 . 2 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
4 elznn0nn 9269 . . . . 5 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
54biimpi 120 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
61biantrurd 305 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ ↔ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
76orbi2d 790 . . . 4 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))))
85, 7mpbird 167 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ))
9 peano2nn0 9218 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
109a1i 9 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0))
111adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
12 1red 7974 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℝ)
1311, 12readdcld 7989 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℝ)
1413renegcld 8339 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℝ)
1514recnd 7988 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℂ)
1611recnd 7988 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
17 1cnd 7975 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℂ)
1816, 17negdid 8283 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) = (-𝑁 + -1))
1918oveq1d 5892 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = ((-𝑁 + -1) + 1))
2016negcld 8257 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℂ)
21 neg1cn 9026 . . . . . . . . . . . 12 -1 ∈ ℂ
2221a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -1 ∈ ℂ)
2320, 22, 17addassd 7982 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → ((-𝑁 + -1) + 1) = (-𝑁 + (-1 + 1)))
2419, 23eqtrd 2210 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + (-1 + 1)))
25 ax-1cn 7906 . . . . . . . . . . 11 1 ∈ ℂ
26 1pneg1e0 9032 . . . . . . . . . . 11 (1 + -1) = 0
2725, 21, 26addcomli 8104 . . . . . . . . . 10 (-1 + 1) = 0
2827oveq2i 5888 . . . . . . . . 9 (-𝑁 + (-1 + 1)) = (-𝑁 + 0)
2924, 28eqtrdi 2226 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + 0))
3020addid1d 8108 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-𝑁 + 0) = -𝑁)
3129, 30eqtrd 2210 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = -𝑁)
32 simpr 110 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
3331, 32eqeltrd 2254 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) ∈ ℕ)
34 elnn0nn 9220 . . . . . 6 (-(𝑁 + 1) ∈ ℕ0 ↔ (-(𝑁 + 1) ∈ ℂ ∧ (-(𝑁 + 1) + 1) ∈ ℕ))
3515, 33, 34sylanbrc 417 . . . . 5 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℕ0)
3635ex 115 . . . 4 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → -(𝑁 + 1) ∈ ℕ0))
3710, 36orim12d 786 . . 3 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
388, 37mpd 13 . 2 (𝑁 ∈ ℤ → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0))
39 elznn0 9270 . 2 ((𝑁 + 1) ∈ ℤ ↔ ((𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
403, 38, 39sylanbrc 417 1 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  wcel 2148  (class class class)co 5877  cc 7811  cr 7812  0cc0 7813  1c1 7814   + caddc 7816  -cneg 8131  cn 8921  0cn0 9178  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  zaddcllempos  9292  peano2zm  9293  zleltp1  9310  btwnnz  9349  peano2uz2  9362  uzind  9366  uzind2  9367  peano2zd  9380  eluzp1m1  9553  eluzp1p1  9555  peano2uz  9585  zltaddlt1le  10009  fzp1disj  10082  elfzp1b  10099  fzneuz  10103  fzp1nel  10106  fzval3  10206  fzossfzop1  10214  rebtwn2zlemstep  10255  flhalf  10304  frec2uzsucd  10403  zesq  10641  hashfzp1  10806  odd2np1lem  11879  odd2np1  11880  mulsucdiv2z  11892  oddp1d2  11897  zob  11898  ltoddhalfle  11900  fldivp1  12348  lgsdir2lem2  14469
  Copyright terms: Public domain W3C validator