ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2z GIF version

Theorem peano2z 9283
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)

Proof of Theorem peano2z
StepHypRef Expression
1 zre 9251 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 1red 7967 . . 3 (𝑁 ∈ ℤ → 1 ∈ ℝ)
31, 2readdcld 7981 . 2 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
4 elznn0nn 9261 . . . . 5 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
54biimpi 120 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
61biantrurd 305 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ ↔ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
76orbi2d 790 . . . 4 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))))
85, 7mpbird 167 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ))
9 peano2nn0 9210 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
109a1i 9 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0))
111adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
12 1red 7967 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℝ)
1311, 12readdcld 7981 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℝ)
1413renegcld 8331 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℝ)
1514recnd 7980 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℂ)
1611recnd 7980 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
17 1cnd 7968 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈ ℂ)
1816, 17negdid 8275 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) = (-𝑁 + -1))
1918oveq1d 5885 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = ((-𝑁 + -1) + 1))
2016negcld 8249 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℂ)
21 neg1cn 9018 . . . . . . . . . . . 12 -1 ∈ ℂ
2221a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -1 ∈ ℂ)
2320, 22, 17addassd 7974 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → ((-𝑁 + -1) + 1) = (-𝑁 + (-1 + 1)))
2419, 23eqtrd 2210 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + (-1 + 1)))
25 ax-1cn 7899 . . . . . . . . . . 11 1 ∈ ℂ
26 1pneg1e0 9024 . . . . . . . . . . 11 (1 + -1) = 0
2725, 21, 26addcomli 8096 . . . . . . . . . 10 (-1 + 1) = 0
2827oveq2i 5881 . . . . . . . . 9 (-𝑁 + (-1 + 1)) = (-𝑁 + 0)
2924, 28eqtrdi 2226 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + 0))
3020addid1d 8100 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-𝑁 + 0) = -𝑁)
3129, 30eqtrd 2210 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = -𝑁)
32 simpr 110 . . . . . . 7 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
3331, 32eqeltrd 2254 . . . . . 6 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) ∈ ℕ)
34 elnn0nn 9212 . . . . . 6 (-(𝑁 + 1) ∈ ℕ0 ↔ (-(𝑁 + 1) ∈ ℂ ∧ (-(𝑁 + 1) + 1) ∈ ℕ))
3515, 33, 34sylanbrc 417 . . . . 5 ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈ ℕ0)
3635ex 115 . . . 4 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → -(𝑁 + 1) ∈ ℕ0))
3710, 36orim12d 786 . . 3 (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
388, 37mpd 13 . 2 (𝑁 ∈ ℤ → ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0))
39 elznn0 9262 . 2 ((𝑁 + 1) ∈ ℤ ↔ ((𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) ∈ ℕ0 ∨ -(𝑁 + 1) ∈ ℕ0)))
403, 38, 39sylanbrc 417 1 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  wcel 2148  (class class class)co 5870  cc 7804  cr 7805  0cc0 7806  1c1 7807   + caddc 7809  -cneg 8123  cn 8913  0cn0 9170  cz 9247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207  ax-setind 4534  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-addcom 7906  ax-addass 7908  ax-distr 7910  ax-i2m1 7911  ax-0id 7914  ax-rnegex 7915  ax-cnre 7917
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-br 4002  df-opab 4063  df-id 4291  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-iota 5175  df-fun 5215  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-sub 8124  df-neg 8125  df-inn 8914  df-n0 9171  df-z 9248
This theorem is referenced by:  zaddcllempos  9284  peano2zm  9285  zleltp1  9302  btwnnz  9341  peano2uz2  9354  uzind  9358  uzind2  9359  peano2zd  9372  eluzp1m1  9545  eluzp1p1  9547  peano2uz  9577  zltaddlt1le  10001  fzp1disj  10073  elfzp1b  10090  fzneuz  10094  fzp1nel  10097  fzval3  10197  fzossfzop1  10205  rebtwn2zlemstep  10246  flhalf  10295  frec2uzsucd  10394  zesq  10631  hashfzp1  10795  odd2np1lem  11867  odd2np1  11868  mulsucdiv2z  11880  oddp1d2  11885  zob  11886  ltoddhalfle  11888  fldivp1  12336  lgsdir2lem2  14212
  Copyright terms: Public domain W3C validator