Proof of Theorem peano2z
Step | Hyp | Ref
| Expression |
1 | | zre 9216 |
. . 3
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
2 | | 1red 7935 |
. . 3
⊢ (𝑁 ∈ ℤ → 1 ∈
ℝ) |
3 | 1, 2 | readdcld 7949 |
. 2
⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈
ℝ) |
4 | | elznn0nn 9226 |
. . . . 5
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) |
5 | 4 | biimpi 119 |
. . . 4
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) |
6 | 1 | biantrurd 303 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ ↔ (𝑁 ∈ ℝ ∧ -𝑁 ∈
ℕ))) |
7 | 6 | orbi2d 785 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨
-𝑁 ∈ ℕ) ↔
(𝑁 ∈
ℕ0 ∨ (𝑁
∈ ℝ ∧ -𝑁
∈ ℕ)))) |
8 | 5, 7 | mpbird 166 |
. . 3
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨
-𝑁 ∈
ℕ)) |
9 | | peano2nn0 9175 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
10 | 9 | a1i 9 |
. . . 4
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0)) |
11 | 1 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈
ℝ) |
12 | | 1red 7935 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈
ℝ) |
13 | 11, 12 | readdcld 7949 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (𝑁 + 1) ∈
ℝ) |
14 | 13 | renegcld 8299 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈
ℝ) |
15 | 14 | recnd 7948 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈
ℂ) |
16 | 11 | recnd 7948 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈
ℂ) |
17 | | 1cnd 7936 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → 1 ∈
ℂ) |
18 | 16, 17 | negdid 8243 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) = (-𝑁 + -1)) |
19 | 18 | oveq1d 5868 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = ((-𝑁 + -1) + 1)) |
20 | 16 | negcld 8217 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈
ℂ) |
21 | | neg1cn 8983 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℂ |
22 | 21 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -1
∈ ℂ) |
23 | 20, 22, 17 | addassd 7942 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → ((-𝑁 + -1) + 1) = (-𝑁 + (-1 + 1))) |
24 | 19, 23 | eqtrd 2203 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + (-1 + 1))) |
25 | | ax-1cn 7867 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
26 | | 1pneg1e0 8989 |
. . . . . . . . . . 11
⊢ (1 + -1)
= 0 |
27 | 25, 21, 26 | addcomli 8064 |
. . . . . . . . . 10
⊢ (-1 + 1)
= 0 |
28 | 27 | oveq2i 5864 |
. . . . . . . . 9
⊢ (-𝑁 + (-1 + 1)) = (-𝑁 + 0) |
29 | 24, 28 | eqtrdi 2219 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = (-𝑁 + 0)) |
30 | 20 | addid1d 8068 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-𝑁 + 0) = -𝑁) |
31 | 29, 30 | eqtrd 2203 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) = -𝑁) |
32 | | simpr 109 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -𝑁 ∈
ℕ) |
33 | 31, 32 | eqeltrd 2247 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → (-(𝑁 + 1) + 1) ∈
ℕ) |
34 | | elnn0nn 9177 |
. . . . . 6
⊢ (-(𝑁 + 1) ∈ ℕ0
↔ (-(𝑁 + 1) ∈
ℂ ∧ (-(𝑁 + 1) +
1) ∈ ℕ)) |
35 | 15, 33, 34 | sylanbrc 415 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ -𝑁 ∈ ℕ) → -(𝑁 + 1) ∈
ℕ0) |
36 | 35 | ex 114 |
. . . 4
⊢ (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → -(𝑁 + 1) ∈
ℕ0)) |
37 | 10, 36 | orim12d 781 |
. . 3
⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ ℕ0 ∨
-𝑁 ∈ ℕ) →
((𝑁 + 1) ∈
ℕ0 ∨ -(𝑁 + 1) ∈
ℕ0))) |
38 | 8, 37 | mpd 13 |
. 2
⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) ∈ ℕ0
∨ -(𝑁 + 1) ∈
ℕ0)) |
39 | | elznn0 9227 |
. 2
⊢ ((𝑁 + 1) ∈ ℤ ↔
((𝑁 + 1) ∈ ℝ
∧ ((𝑁 + 1) ∈
ℕ0 ∨ -(𝑁 + 1) ∈
ℕ0))) |
40 | 3, 38, 39 | sylanbrc 415 |
1
⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈
ℤ) |