| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| biimtrrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1822 cbvexdh 1949 repizf2 4205 issref 5064 fnun 5381 ovigg 6065 tfrlem9 6404 tfri3 6452 ordge1n0im 6521 nntri3or 6578 updjud 7183 axprecex 7992 peano5nnnn 8004 peano5nni 9038 zeo 9477 nn0ind-raph 9489 fzm1 10221 fzind2 10366 fzfig 10573 bcpasc 10909 climrecvg1n 11601 oddnn02np1 12133 oddge22np1 12134 evennn02n 12135 evennn2n 12136 bitsfzo 12208 gcdaddm 12247 coprmdvds1 12355 qredeq 12360 fiinopn 14418 zabsle1 15418 bj-intabssel 15658 triap 15901 |
| Copyright terms: Public domain | W3C validator |