| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| biimtrrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1824 cbvexdh 1951 repizf2 4214 issref 5074 fnun 5391 ovigg 6079 tfrlem9 6418 tfri3 6466 ordge1n0im 6535 nntri3or 6592 updjud 7199 axprecex 8013 peano5nnnn 8025 peano5nni 9059 zeo 9498 nn0ind-raph 9510 fzm1 10242 fzind2 10390 fzfig 10597 bcpasc 10933 climrecvg1n 11734 oddnn02np1 12266 oddge22np1 12267 evennn02n 12268 evennn2n 12269 bitsfzo 12341 gcdaddm 12380 coprmdvds1 12488 qredeq 12493 fiinopn 14551 zabsle1 15551 incistruhgr 15761 bj-intabssel 15864 triap 16109 |
| Copyright terms: Public domain | W3C validator |