| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| biimtrrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1846 cbvexdh 1973 repizf2 4245 issref 5110 fnun 5428 ovigg 6124 tfrlem9 6463 tfri3 6511 ordge1n0im 6580 nntri3or 6637 updjud 7245 axprecex 8063 peano5nnnn 8075 peano5nni 9109 zeo 9548 nn0ind-raph 9560 fzm1 10292 fzind2 10440 fzfig 10647 bcpasc 10983 climrecvg1n 11854 oddnn02np1 12386 oddge22np1 12387 evennn02n 12388 evennn2n 12389 bitsfzo 12461 gcdaddm 12500 coprmdvds1 12608 qredeq 12613 fiinopn 14672 zabsle1 15672 incistruhgr 15884 bj-intabssel 16111 triap 16356 |
| Copyright terms: Public domain | W3C validator |