| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| biimtrrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1814 cbvexdh 1941 repizf2 4196 issref 5053 fnun 5367 ovigg 6047 tfrlem9 6386 tfri3 6434 ordge1n0im 6503 nntri3or 6560 updjud 7157 axprecex 7966 peano5nnnn 7978 peano5nni 9012 zeo 9450 nn0ind-raph 9462 fzm1 10194 fzind2 10334 fzfig 10541 bcpasc 10877 climrecvg1n 11532 oddnn02np1 12064 oddge22np1 12065 evennn02n 12066 evennn2n 12067 bitsfzo 12139 gcdaddm 12178 coprmdvds1 12286 qredeq 12291 fiinopn 14348 zabsle1 15348 bj-intabssel 15543 triap 15786 |
| Copyright terms: Public domain | W3C validator |