![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrrdi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
biimtrrdi.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
biimtrrdi.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
biimtrrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrrdi.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | biimtrrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exdistrfor 1811 cbvexdh 1938 repizf2 4192 issref 5049 fnun 5361 ovigg 6040 tfrlem9 6374 tfri3 6422 ordge1n0im 6491 nntri3or 6548 updjud 7143 axprecex 7942 peano5nnnn 7954 peano5nni 8987 zeo 9425 nn0ind-raph 9437 fzm1 10169 fzind2 10309 fzfig 10504 bcpasc 10840 climrecvg1n 11494 oddnn02np1 12024 oddge22np1 12025 evennn02n 12026 evennn2n 12027 gcdaddm 12124 coprmdvds1 12232 qredeq 12237 fiinopn 14183 zabsle1 15156 bj-intabssel 15351 triap 15589 |
Copyright terms: Public domain | W3C validator |