![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrrdi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
biimtrrdi.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
biimtrrdi.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
biimtrrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrrdi.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | biimtrrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exdistrfor 1811 cbvexdh 1938 repizf2 4191 issref 5048 fnun 5360 ovigg 6039 tfrlem9 6372 tfri3 6420 ordge1n0im 6489 nntri3or 6546 updjud 7141 axprecex 7940 peano5nnnn 7952 peano5nni 8985 zeo 9422 nn0ind-raph 9434 fzm1 10166 fzind2 10306 fzfig 10501 bcpasc 10837 climrecvg1n 11491 oddnn02np1 12021 oddge22np1 12022 evennn02n 12023 evennn2n 12024 gcdaddm 12121 coprmdvds1 12229 qredeq 12234 fiinopn 14172 zabsle1 15115 bj-intabssel 15281 triap 15519 |
Copyright terms: Public domain | W3C validator |