ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimtrrdi GIF version

Theorem biimtrrdi 164
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
biimtrrdi.1 (𝜑 → (𝜒𝜓))
biimtrrdi.2 (𝜒𝜃)
Assertion
Ref Expression
biimtrrdi (𝜑 → (𝜓𝜃))

Proof of Theorem biimtrrdi
StepHypRef Expression
1 biimtrrdi.1 . . 3 (𝜑 → (𝜒𝜓))
21biimprd 158 . 2 (𝜑 → (𝜓𝜒))
3 biimtrrdi.2 . 2 (𝜒𝜃)
42, 3syl6 33 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exdistrfor  1814  cbvexdh  1941  repizf2  4196  issref  5053  fnun  5367  ovigg  6047  tfrlem9  6386  tfri3  6434  ordge1n0im  6503  nntri3or  6560  updjud  7157  axprecex  7966  peano5nnnn  7978  peano5nni  9012  zeo  9450  nn0ind-raph  9462  fzm1  10194  fzind2  10334  fzfig  10541  bcpasc  10877  climrecvg1n  11532  oddnn02np1  12064  oddge22np1  12065  evennn02n  12066  evennn2n  12067  bitsfzo  12139  gcdaddm  12178  coprmdvds1  12286  qredeq  12291  fiinopn  14348  zabsle1  15348  bj-intabssel  15543  triap  15786
  Copyright terms: Public domain W3C validator