ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimtrrdi GIF version

Theorem biimtrrdi 164
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
biimtrrdi.1 (𝜑 → (𝜒𝜓))
biimtrrdi.2 (𝜒𝜃)
Assertion
Ref Expression
biimtrrdi (𝜑 → (𝜓𝜃))

Proof of Theorem biimtrrdi
StepHypRef Expression
1 biimtrrdi.1 . . 3 (𝜑 → (𝜒𝜓))
21biimprd 158 . 2 (𝜑 → (𝜓𝜒))
3 biimtrrdi.2 . 2 (𝜒𝜃)
42, 3syl6 33 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exdistrfor  1822  cbvexdh  1949  repizf2  4205  issref  5064  fnun  5381  ovigg  6065  tfrlem9  6404  tfri3  6452  ordge1n0im  6521  nntri3or  6578  updjud  7183  axprecex  7992  peano5nnnn  8004  peano5nni  9038  zeo  9477  nn0ind-raph  9489  fzm1  10221  fzind2  10366  fzfig  10573  bcpasc  10909  climrecvg1n  11601  oddnn02np1  12133  oddge22np1  12134  evennn02n  12135  evennn2n  12136  bitsfzo  12208  gcdaddm  12247  coprmdvds1  12355  qredeq  12360  fiinopn  14418  zabsle1  15418  bj-intabssel  15658  triap  15901
  Copyright terms: Public domain W3C validator