ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimtrrdi GIF version

Theorem biimtrrdi 164
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
biimtrrdi.1 (𝜑 → (𝜒𝜓))
biimtrrdi.2 (𝜒𝜃)
Assertion
Ref Expression
biimtrrdi (𝜑 → (𝜓𝜃))

Proof of Theorem biimtrrdi
StepHypRef Expression
1 biimtrrdi.1 . . 3 (𝜑 → (𝜒𝜓))
21biimprd 158 . 2 (𝜑 → (𝜓𝜒))
3 biimtrrdi.2 . 2 (𝜒𝜃)
42, 3syl6 33 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exdistrfor  1846  cbvexdh  1973  repizf2  4245  issref  5110  fnun  5428  ovigg  6124  tfrlem9  6463  tfri3  6511  ordge1n0im  6580  nntri3or  6637  updjud  7245  axprecex  8063  peano5nnnn  8075  peano5nni  9109  zeo  9548  nn0ind-raph  9560  fzm1  10292  fzind2  10440  fzfig  10647  bcpasc  10983  climrecvg1n  11854  oddnn02np1  12386  oddge22np1  12387  evennn02n  12388  evennn2n  12389  bitsfzo  12461  gcdaddm  12500  coprmdvds1  12608  qredeq  12613  fiinopn  14672  zabsle1  15672  incistruhgr  15884  bj-intabssel  16111  triap  16356
  Copyright terms: Public domain W3C validator