ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsfzo GIF version

Theorem bitsfzo 12119
Description: The bits of a number are all at positions less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
bitsfzo ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀)))

Proof of Theorem bitsfzo
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsval 12108 . . . 4 (𝑚 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 simp32 1036 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ ℕ0)
3 nn0uz 9636 . . . . . . 7 0 = (ℤ‘0)
42, 3eleqtrdi 2289 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ (ℤ‘0))
5 simp1r 1024 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑀 ∈ ℕ0)
65nn0zd 9446 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑀 ∈ ℤ)
7 2re 9060 . . . . . . . . . 10 2 ∈ ℝ
87a1i 9 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 2 ∈ ℝ)
98, 2reexpcld 10782 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℝ)
10 simp1l 1023 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 ∈ ℤ)
1110zred 9448 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 ∈ ℝ)
128, 5reexpcld 10782 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑀) ∈ ℝ)
139recnd 8055 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℂ)
1413mullidd 8044 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (1 · (2↑𝑚)) = (2↑𝑚))
15 1z 9352 . . . . . . . . . . . . . 14 1 ∈ ℤ
16 zq 9700 . . . . . . . . . . . . . 14 (1 ∈ ℤ → 1 ∈ ℚ)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 1 ∈ ℚ
1817a1i 9 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 ∈ ℚ)
19 2nn 9152 . . . . . . . . . . . . . . 15 2 ∈ ℕ
2019a1i 9 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 2 ∈ ℕ)
2120, 2nnexpcld 10787 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℕ)
22 znq 9698 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ (2↑𝑚) ∈ ℕ) → (𝑁 / (2↑𝑚)) ∈ ℚ)
2310, 21, 22syl2anc 411 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (𝑁 / (2↑𝑚)) ∈ ℚ)
24 qdcle 10336 . . . . . . . . . . . 12 ((1 ∈ ℚ ∧ (𝑁 / (2↑𝑚)) ∈ ℚ) → DECID 1 ≤ (𝑁 / (2↑𝑚)))
2518, 23, 24syl2anc 411 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → DECID 1 ≤ (𝑁 / (2↑𝑚)))
26 simp33 1037 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))
27 qltnle 10333 . . . . . . . . . . . . . 14 (((𝑁 / (2↑𝑚)) ∈ ℚ ∧ 1 ∈ ℚ) → ((𝑁 / (2↑𝑚)) < 1 ↔ ¬ 1 ≤ (𝑁 / (2↑𝑚))))
2823, 18, 27syl2anc 411 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < 1 ↔ ¬ 1 ≤ (𝑁 / (2↑𝑚))))
29 0p1e1 9104 . . . . . . . . . . . . . . 15 (0 + 1) = 1
3029breq2i 4041 . . . . . . . . . . . . . 14 ((𝑁 / (2↑𝑚)) < (0 + 1) ↔ (𝑁 / (2↑𝑚)) < 1)
31 2rp 9733 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
3231a1i 9 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 2 ∈ ℝ+)
332nn0zd 9446 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ ℤ)
3432, 33rpexpcld 10789 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℝ+)
35 elfzole1 10231 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (0..^(2↑𝑀)) → 0 ≤ 𝑁)
36353ad2ant2 1021 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 0 ≤ 𝑁)
3711, 34, 36divge0d 9812 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 0 ≤ (𝑁 / (2↑𝑚)))
38 0z 9337 . . . . . . . . . . . . . . . . 17 0 ∈ ℤ
39 flqbi 10380 . . . . . . . . . . . . . . . . 17 (((𝑁 / (2↑𝑚)) ∈ ℚ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (2↑𝑚))) = 0 ↔ (0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1))))
4023, 38, 39sylancl 413 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((⌊‘(𝑁 / (2↑𝑚))) = 0 ↔ (0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1))))
41 z0even 12076 . . . . . . . . . . . . . . . . 17 2 ∥ 0
42 id 19 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑁 / (2↑𝑚))) = 0 → (⌊‘(𝑁 / (2↑𝑚))) = 0)
4341, 42breqtrrid 4071 . . . . . . . . . . . . . . . 16 ((⌊‘(𝑁 / (2↑𝑚))) = 0 → 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))
4440, 43biimtrrdi 164 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1)) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
4537, 44mpand 429 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < (0 + 1) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
4630, 45biimtrrid 153 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < 1 → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
4728, 46sylbird 170 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (¬ 1 ≤ (𝑁 / (2↑𝑚)) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
4826, 47mtod 664 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ¬ ¬ 1 ≤ (𝑁 / (2↑𝑚)))
49 notnotrdc 844 . . . . . . . . . . 11 (DECID 1 ≤ (𝑁 / (2↑𝑚)) → (¬ ¬ 1 ≤ (𝑁 / (2↑𝑚)) → 1 ≤ (𝑁 / (2↑𝑚))))
5025, 48, 49sylc 62 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 ≤ (𝑁 / (2↑𝑚)))
51 1red 8041 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 ∈ ℝ)
5251, 11, 34lemuldivd 9821 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((1 · (2↑𝑚)) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑𝑚))))
5350, 52mpbird 167 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (1 · (2↑𝑚)) ≤ 𝑁)
5414, 53eqbrtrrd 4057 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ≤ 𝑁)
55 elfzolt2 10232 . . . . . . . . 9 (𝑁 ∈ (0..^(2↑𝑀)) → 𝑁 < (2↑𝑀))
56553ad2ant2 1021 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 < (2↑𝑀))
579, 11, 12, 54, 56lelttrd 8151 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) < (2↑𝑀))
58 1lt2 9160 . . . . . . . . 9 1 < 2
5958a1i 9 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 < 2)
60 nn0ltexp2 10801 . . . . . . . 8 (((2 ∈ ℝ ∧ 𝑚 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 1 < 2) → (𝑚 < 𝑀 ↔ (2↑𝑚) < (2↑𝑀)))
618, 2, 5, 59, 60syl31anc 1252 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (𝑚 < 𝑀 ↔ (2↑𝑚) < (2↑𝑀)))
6257, 61mpbird 167 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 < 𝑀)
63 elfzo2 10225 . . . . . 6 (𝑚 ∈ (0..^𝑀) ↔ (𝑚 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑚 < 𝑀))
644, 6, 62, 63syl3anbrc 1183 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ (0..^𝑀))
65643expia 1207 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))) → 𝑚 ∈ (0..^𝑀)))
661, 65biimtrid 152 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → (𝑚 ∈ (bits‘𝑁) → 𝑚 ∈ (0..^𝑀)))
6766ssrdv 3189 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → (bits‘𝑁) ⊆ (0..^𝑀))
68 simpr 110 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
6968nnred 9003 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℝ)
70 simpllr 534 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
7170nn0red 9303 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
72 maxle2 11377 . . . . . . 7 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ sup({-𝑁, 𝑀}, ℝ, < ))
7369, 71, 72syl2anc 411 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ≤ sup({-𝑁, 𝑀}, ℝ, < ))
74 simplr 528 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (bits‘𝑁) ⊆ (0..^𝑀))
75 n2dvdsm1 12078 . . . . . . . . . . 11 ¬ 2 ∥ -1
76 simplll 533 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
7776zred 9448 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
7819a1i 9 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 2 ∈ ℕ)
7968nnnn0d 9302 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0)
80 nn0maxcl 11390 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → sup({-𝑁, 𝑀}, ℝ, < ) ∈ ℕ0)
8179, 70, 80syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) ∈ ℕ0)
8278, 81nnexpcld 10787 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑sup({-𝑁, 𝑀}, ℝ, < )) ∈ ℕ)
8377, 82nndivred 9040 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ∈ ℝ)
84 1red 8041 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 1 ∈ ℝ)
8576zcnd 9449 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
8682nncnd 9004 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑sup({-𝑁, 𝑀}, ℝ, < )) ∈ ℂ)
8782nnap0d 9036 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑sup({-𝑁, 𝑀}, ℝ, < )) # 0)
8885, 86, 87divnegapd 8830 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) = (-𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))))
8981nn0red 9303 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) ∈ ℝ)
9082nnred 9003 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑sup({-𝑁, 𝑀}, ℝ, < )) ∈ ℝ)
91 maxle1 11376 . . . . . . . . . . . . . . . . . . 19 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → -𝑁 ≤ sup({-𝑁, 𝑀}, ℝ, < ))
9269, 71, 91syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ sup({-𝑁, 𝑀}, ℝ, < ))
93 2z 9354 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
94 uzid 9615 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 2 ∈ (ℤ‘2)
96 bernneq3 10754 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ (ℤ‘2) ∧ sup({-𝑁, 𝑀}, ℝ, < ) ∈ ℕ0) → sup({-𝑁, 𝑀}, ℝ, < ) < (2↑sup({-𝑁, 𝑀}, ℝ, < )))
9795, 81, 96sylancr 414 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) < (2↑sup({-𝑁, 𝑀}, ℝ, < )))
9889, 90, 97ltled 8145 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) ≤ (2↑sup({-𝑁, 𝑀}, ℝ, < )))
9969, 89, 90, 92, 98letrd 8150 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ (2↑sup({-𝑁, 𝑀}, ℝ, < )))
10086mulridd 8043 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((2↑sup({-𝑁, 𝑀}, ℝ, < )) · 1) = (2↑sup({-𝑁, 𝑀}, ℝ, < )))
10199, 100breqtrrd 4061 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ ((2↑sup({-𝑁, 𝑀}, ℝ, < )) · 1))
10282nnrpd 9769 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑sup({-𝑁, 𝑀}, ℝ, < )) ∈ ℝ+)
10369, 84, 102ledivmuld 9825 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((-𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ≤ 1 ↔ -𝑁 ≤ ((2↑sup({-𝑁, 𝑀}, ℝ, < )) · 1)))
104101, 103mpbird 167 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (-𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ≤ 1)
10588, 104eqbrtrd 4055 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ≤ 1)
10683, 84, 105lenegcon1d 8554 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -1 ≤ (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))))
10768nngt0d 9034 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < -𝑁)
10882nngt0d 9034 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < (2↑sup({-𝑁, 𝑀}, ℝ, < )))
10969, 90, 107, 108divgt0d 8962 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < (-𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))))
110109, 88breqtrrd 4061 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < -(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))))
11183lt0neg1d 8542 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) < 0 ↔ 0 < -(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < )))))
112110, 111mpbird 167 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) < 0)
113 ax-1cn 7972 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 neg1cn 9095 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
115 1pneg1e0 9101 . . . . . . . . . . . . . . 15 (1 + -1) = 0
116113, 114, 115addcomli 8171 . . . . . . . . . . . . . 14 (-1 + 1) = 0
117112, 116breqtrrdi 4075 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) < (-1 + 1))
118 znq 9698 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (2↑sup({-𝑁, 𝑀}, ℝ, < )) ∈ ℕ) → (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ∈ ℚ)
11976, 82, 118syl2anc 411 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ∈ ℚ)
120 neg1z 9358 . . . . . . . . . . . . . 14 -1 ∈ ℤ
121 flqbi 10380 . . . . . . . . . . . . . 14 (((𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ∈ ℚ ∧ -1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < )))) = -1 ↔ (-1 ≤ (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ∧ (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) < (-1 + 1))))
122119, 120, 121sylancl 413 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((⌊‘(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < )))) = -1 ↔ (-1 ≤ (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) ∧ (𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))) < (-1 + 1))))
123106, 117, 122mpbir2and 946 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (⌊‘(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < )))) = -1)
124123breq2d 4045 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2 ∥ (⌊‘(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < )))) ↔ 2 ∥ -1))
12575, 124mtbiri 676 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < )))))
126 bitsval2 12109 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ sup({-𝑁, 𝑀}, ℝ, < ) ∈ ℕ0) → (sup({-𝑁, 𝑀}, ℝ, < ) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))))))
12776, 81, 126syl2anc 411 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (sup({-𝑁, 𝑀}, ℝ, < ) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑sup({-𝑁, 𝑀}, ℝ, < ))))))
128125, 127mpbird 167 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) ∈ (bits‘𝑁))
12974, 128sseldd 3184 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) ∈ (0..^𝑀))
130 elfzolt2 10232 . . . . . . . 8 (sup({-𝑁, 𝑀}, ℝ, < ) ∈ (0..^𝑀) → sup({-𝑁, 𝑀}, ℝ, < ) < 𝑀)
131129, 130syl 14 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) < 𝑀)
13281nn0zd 9446 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → sup({-𝑁, 𝑀}, ℝ, < ) ∈ ℤ)
13370nn0zd 9446 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
134 zltnle 9372 . . . . . . . 8 ((sup({-𝑁, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (sup({-𝑁, 𝑀}, ℝ, < ) < 𝑀 ↔ ¬ 𝑀 ≤ sup({-𝑁, 𝑀}, ℝ, < )))
135132, 133, 134syl2anc 411 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (sup({-𝑁, 𝑀}, ℝ, < ) < 𝑀 ↔ ¬ 𝑀 ≤ sup({-𝑁, 𝑀}, ℝ, < )))
136131, 135mpbid 147 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ¬ 𝑀 ≤ sup({-𝑁, 𝑀}, ℝ, < ))
13773, 136pm2.65da 662 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → ¬ -𝑁 ∈ ℕ)
138137intnand 932 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → ¬ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))
139 simpll 527 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ ℤ)
140 elznn0nn 9340 . . . . 5 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
141139, 140sylib 122 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
142138, 141ecased 1360 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ ℕ0)
143 simplr 528 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑀 ∈ ℕ0)
144 simpr 110 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (bits‘𝑁) ⊆ (0..^𝑀))
145 eqid 2196 . . 3 inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
146142, 143, 144, 145bitsfzolem 12118 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ (0..^(2↑𝑀)))
14767, 146impbida 596 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  {crab 2479  wss 3157  {cpr 3623   class class class wbr 4033  cfv 5258  (class class class)co 5922  supcsup 7048  infcinf 7049  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  -cneg 8198   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  cq 9693  +crp 9728  ..^cfzo 10217  cfl 10358  cexp 10630  cdvds 11952  bitscbits 12105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-bits 12106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator