ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimtrrdi Unicode version

Theorem biimtrrdi 164
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
biimtrrdi.1  |-  ( ph  ->  ( ch  <->  ps )
)
biimtrrdi.2  |-  ( ch 
->  th )
Assertion
Ref Expression
biimtrrdi  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem biimtrrdi
StepHypRef Expression
1 biimtrrdi.1 . . 3  |-  ( ph  ->  ( ch  <->  ps )
)
21biimprd 158 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
3 biimtrrdi.2 . 2  |-  ( ch 
->  th )
42, 3syl6 33 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exdistrfor  1824  cbvexdh  1951  repizf2  4222  issref  5084  fnun  5401  ovigg  6089  tfrlem9  6428  tfri3  6476  ordge1n0im  6545  nntri3or  6602  updjud  7210  axprecex  8028  peano5nnnn  8040  peano5nni  9074  zeo  9513  nn0ind-raph  9525  fzm1  10257  fzind2  10405  fzfig  10612  bcpasc  10948  climrecvg1n  11774  oddnn02np1  12306  oddge22np1  12307  evennn02n  12308  evennn2n  12309  bitsfzo  12381  gcdaddm  12420  coprmdvds1  12528  qredeq  12533  fiinopn  14591  zabsle1  15591  incistruhgr  15801  bj-intabssel  15925  triap  16170
  Copyright terms: Public domain W3C validator