| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 |
|
| biimtrrdi.2 |
|
| Ref | Expression |
|---|---|
| biimtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | biimtrrdi.2 |
. 2
| |
| 4 | 2, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1823 cbvexdh 1950 repizf2 4207 issref 5066 fnun 5383 ovigg 6068 tfrlem9 6407 tfri3 6455 ordge1n0im 6524 nntri3or 6581 updjud 7186 axprecex 7995 peano5nnnn 8007 peano5nni 9041 zeo 9480 nn0ind-raph 9492 fzm1 10224 fzind2 10370 fzfig 10577 bcpasc 10913 climrecvg1n 11692 oddnn02np1 12224 oddge22np1 12225 evennn02n 12226 evennn2n 12227 bitsfzo 12299 gcdaddm 12338 coprmdvds1 12446 qredeq 12451 fiinopn 14509 zabsle1 15509 bj-intabssel 15762 triap 16005 |
| Copyright terms: Public domain | W3C validator |