| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 |
|
| biimtrrdi.2 |
|
| Ref | Expression |
|---|---|
| biimtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | biimtrrdi.2 |
. 2
| |
| 4 | 2, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1824 cbvexdh 1951 repizf2 4222 issref 5084 fnun 5401 ovigg 6089 tfrlem9 6428 tfri3 6476 ordge1n0im 6545 nntri3or 6602 updjud 7210 axprecex 8028 peano5nnnn 8040 peano5nni 9074 zeo 9513 nn0ind-raph 9525 fzm1 10257 fzind2 10405 fzfig 10612 bcpasc 10948 climrecvg1n 11774 oddnn02np1 12306 oddge22np1 12307 evennn02n 12308 evennn2n 12309 bitsfzo 12381 gcdaddm 12420 coprmdvds1 12528 qredeq 12533 fiinopn 14591 zabsle1 15591 incistruhgr 15801 bj-intabssel 15925 triap 16170 |
| Copyright terms: Public domain | W3C validator |