| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 |
|
| biimtrrdi.2 |
|
| Ref | Expression |
|---|---|
| biimtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | biimtrrdi.2 |
. 2
| |
| 4 | 2, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1814 cbvexdh 1941 repizf2 4195 issref 5052 fnun 5364 ovigg 6043 tfrlem9 6377 tfri3 6425 ordge1n0im 6494 nntri3or 6551 updjud 7148 axprecex 7947 peano5nnnn 7959 peano5nni 8993 zeo 9431 nn0ind-raph 9443 fzm1 10175 fzind2 10315 fzfig 10522 bcpasc 10858 climrecvg1n 11513 oddnn02np1 12045 oddge22np1 12046 evennn02n 12047 evennn2n 12048 bitsfzo 12119 gcdaddm 12151 coprmdvds1 12259 qredeq 12264 fiinopn 14240 zabsle1 15240 bj-intabssel 15435 triap 15673 |
| Copyright terms: Public domain | W3C validator |