| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 |
|
| biimtrrdi.2 |
|
| Ref | Expression |
|---|---|
| biimtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | biimtrrdi.2 |
. 2
| |
| 4 | 2, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1814 cbvexdh 1941 repizf2 4196 issref 5053 fnun 5367 ovigg 6047 tfrlem9 6386 tfri3 6434 ordge1n0im 6503 nntri3or 6560 updjud 7157 axprecex 7964 peano5nnnn 7976 peano5nni 9010 zeo 9448 nn0ind-raph 9460 fzm1 10192 fzind2 10332 fzfig 10539 bcpasc 10875 climrecvg1n 11530 oddnn02np1 12062 oddge22np1 12063 evennn02n 12064 evennn2n 12065 bitsfzo 12137 gcdaddm 12176 coprmdvds1 12284 qredeq 12289 fiinopn 14324 zabsle1 15324 bj-intabssel 15519 triap 15760 |
| Copyright terms: Public domain | W3C validator |