| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 |
|
| biimtrrdi.2 |
|
| Ref | Expression |
|---|---|
| biimtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | biimtrrdi.2 |
. 2
| |
| 4 | 2, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1846 cbvexdh 1973 repizf2 4246 issref 5111 fnun 5429 ovigg 6125 tfrlem9 6465 tfri3 6513 ordge1n0im 6582 nntri3or 6639 updjud 7249 axprecex 8067 peano5nnnn 8079 peano5nni 9113 zeo 9552 nn0ind-raph 9564 fzm1 10296 fzind2 10445 fzfig 10652 bcpasc 10988 climrecvg1n 11859 oddnn02np1 12391 oddge22np1 12392 evennn02n 12393 evennn2n 12394 bitsfzo 12466 gcdaddm 12505 coprmdvds1 12613 qredeq 12618 fiinopn 14678 zabsle1 15678 incistruhgr 15890 wlk1walkdom 16070 bj-intabssel 16153 triap 16397 |
| Copyright terms: Public domain | W3C validator |