ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimtrrdi Unicode version

Theorem biimtrrdi 164
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
biimtrrdi.1  |-  ( ph  ->  ( ch  <->  ps )
)
biimtrrdi.2  |-  ( ch 
->  th )
Assertion
Ref Expression
biimtrrdi  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem biimtrrdi
StepHypRef Expression
1 biimtrrdi.1 . . 3  |-  ( ph  ->  ( ch  <->  ps )
)
21biimprd 158 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
3 biimtrrdi.2 . 2  |-  ( ch 
->  th )
42, 3syl6 33 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exdistrfor  1814  cbvexdh  1941  repizf2  4195  issref  5052  fnun  5364  ovigg  6043  tfrlem9  6377  tfri3  6425  ordge1n0im  6494  nntri3or  6551  updjud  7148  axprecex  7947  peano5nnnn  7959  peano5nni  8993  zeo  9431  nn0ind-raph  9443  fzm1  10175  fzind2  10315  fzfig  10522  bcpasc  10858  climrecvg1n  11513  oddnn02np1  12045  oddge22np1  12046  evennn02n  12047  evennn2n  12048  bitsfzo  12119  gcdaddm  12151  coprmdvds1  12259  qredeq  12264  fiinopn  14240  zabsle1  15240  bj-intabssel  15435  triap  15673
  Copyright terms: Public domain W3C validator