| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrdi | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| biimtrrdi.1 |
|
| biimtrrdi.2 |
|
| Ref | Expression |
|---|---|
| biimtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrdi.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | biimtrrdi.2 |
. 2
| |
| 4 | 2, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistrfor 1823 cbvexdh 1950 repizf2 4206 issref 5065 fnun 5382 ovigg 6066 tfrlem9 6405 tfri3 6453 ordge1n0im 6522 nntri3or 6579 updjud 7184 axprecex 7993 peano5nnnn 8005 peano5nni 9039 zeo 9478 nn0ind-raph 9490 fzm1 10222 fzind2 10368 fzfig 10575 bcpasc 10911 climrecvg1n 11659 oddnn02np1 12191 oddge22np1 12192 evennn02n 12193 evennn2n 12194 bitsfzo 12266 gcdaddm 12305 coprmdvds1 12413 qredeq 12418 fiinopn 14476 zabsle1 15476 bj-intabssel 15725 triap 15968 |
| Copyright terms: Public domain | W3C validator |