![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omsson | GIF version |
Description: Constructive proof of omsson 4649. See also bj-omssonALT 15576. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged. |
Ref | Expression |
---|---|
bj-omsson | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnelon 15572 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | 1 | ssriv 3187 | 1 ⊢ ω ⊆ On |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3157 Oncon0 4398 ωcom 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15426 ax-bdor 15429 ax-bdal 15431 ax-bdex 15432 ax-bdeq 15433 ax-bdel 15434 ax-bdsb 15435 ax-bdsep 15497 ax-infvn 15554 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-bdc 15454 df-bj-ind 15540 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |