Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omsson GIF version

Theorem bj-omsson 16067
Description: Constructive proof of omsson 4674. See also bj-omssonALT 16068. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
Assertion
Ref Expression
bj-omsson ω ⊆ On

Proof of Theorem bj-omsson
StepHypRef Expression
1 bj-nnelon 16064 . 2 (𝑥 ∈ ω → 𝑥 ∈ On)
21ssriv 3201 1 ω ⊆ On
Colors of variables: wff set class
Syntax hints:  wss 3170  Oncon0 4423  ωcom 4651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-nul 4181  ax-pr 4264  ax-un 4493  ax-bd0 15918  ax-bdor 15921  ax-bdal 15923  ax-bdex 15924  ax-bdeq 15925  ax-bdel 15926  ax-bdsb 15927  ax-bdsep 15989  ax-infvn 16046
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-pr 3645  df-uni 3860  df-int 3895  df-tr 4154  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-bdc 15946  df-bj-ind 16032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator