| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omsson | GIF version | ||
| Description: Constructive proof of omsson 4674. See also bj-omssonALT 16068. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged. |
| Ref | Expression |
|---|---|
| bj-omsson | ⊢ ω ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnelon 16064 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 2 | 1 | ssriv 3201 | 1 ⊢ ω ⊆ On |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3170 Oncon0 4423 ωcom 4651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4181 ax-pr 4264 ax-un 4493 ax-bd0 15918 ax-bdor 15921 ax-bdal 15923 ax-bdex 15924 ax-bdeq 15925 ax-bdel 15926 ax-bdsb 15927 ax-bdsep 15989 ax-infvn 16046 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-uni 3860 df-int 3895 df-tr 4154 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-bdc 15946 df-bj-ind 16032 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |