Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omsson GIF version

Theorem bj-omsson 15898
Description: Constructive proof of omsson 4661. See also bj-omssonALT 15899. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
Assertion
Ref Expression
bj-omsson ω ⊆ On

Proof of Theorem bj-omsson
StepHypRef Expression
1 bj-nnelon 15895 . 2 (𝑥 ∈ ω → 𝑥 ∈ On)
21ssriv 3197 1 ω ⊆ On
Colors of variables: wff set class
Syntax hints:  wss 3166  Oncon0 4410  ωcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-nul 4170  ax-pr 4253  ax-un 4480  ax-bd0 15749  ax-bdor 15752  ax-bdal 15754  ax-bdex 15755  ax-bdeq 15756  ax-bdel 15757  ax-bdsb 15758  ax-bdsep 15820  ax-infvn 15877
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-bdc 15777  df-bj-ind 15863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator