ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le9lt10 GIF version

Theorem le9lt10 9348
Description: A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
le9lt10.c 𝐴 ∈ ℕ0
le9lt10.e 𝐴 ≤ 9
Assertion
Ref Expression
le9lt10 𝐴 < 10

Proof of Theorem le9lt10
StepHypRef Expression
1 le9lt10.e . . 3 𝐴 ≤ 9
2 le9lt10.c . . . . 5 𝐴 ∈ ℕ0
32nn0zi 9213 . . . 4 𝐴 ∈ ℤ
4 9nn0 9138 . . . . 5 9 ∈ ℕ0
54nn0zi 9213 . . . 4 9 ∈ ℤ
6 zleltp1 9246 . . . 4 ((𝐴 ∈ ℤ ∧ 9 ∈ ℤ) → (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1)))
73, 5, 6mp2an 423 . . 3 (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1))
81, 7mpbi 144 . 2 𝐴 < (9 + 1)
9 9p1e10 9324 . 2 (9 + 1) = 10
108, 9breqtri 4007 1 𝐴 < 10
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2136   class class class wbr 3982  (class class class)co 5842  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cle 7934  9c9 8915  0cn0 9114  cz 9191  cdc 9322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-dec 9323
This theorem is referenced by:  declth  9351  decltdi  9360
  Copyright terms: Public domain W3C validator