ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserge0 GIF version

Theorem iserge0 11508
Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1 𝑍 = (ℤ𝑀)
iserge0.2 (𝜑𝑀 ∈ ℤ)
iserge0.3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserge0.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
iserge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
iserge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserge0
StepHypRef Expression
1 clim2iser.1 . 2 𝑍 = (ℤ𝑀)
2 iserge0.2 . 2 (𝜑𝑀 ∈ ℤ)
3 serclim0 11470 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
42, 3syl 14 . 2 (𝜑 → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
5 iserge0.3 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
6 simpr 110 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
76, 1eleqtrdi 2289 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
8 c0ex 8020 . . . . 5 0 ∈ V
98fvconst2 5778 . . . 4 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
107, 9syl 14 . . 3 ((𝜑𝑘𝑍) → (((ℤ𝑀) × {0})‘𝑘) = 0)
11 0re 8026 . . 3 0 ∈ ℝ
1210, 11eqeltrdi 2287 . 2 ((𝜑𝑘𝑍) → (((ℤ𝑀) × {0})‘𝑘) ∈ ℝ)
13 iserge0.4 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
14 iserge0.5 . . 3 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
1510, 14eqbrtrd 4055 . 2 ((𝜑𝑘𝑍) → (((ℤ𝑀) × {0})‘𝑘) ≤ (𝐹𝑘))
161, 2, 4, 5, 12, 13, 15iserle 11507 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3622   class class class wbr 4033   × cxp 4661  cfv 5258  cr 7878  0cc0 7879   + caddc 7882  cle 8062  cz 9326  cuz 9601  seqcseq 10539  cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  isumge0  11595
  Copyright terms: Public domain W3C validator