ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fser0const GIF version

Theorem fser0const 10518
Description: Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
Hypothesis
Ref Expression
fser0const.z 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
fser0const (𝑁𝑍 → (𝑛𝑍 ↦ if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0}))
Distinct variable groups:   𝑛,𝑁   𝑛,𝑍
Allowed substitution hint:   𝑀(𝑛)

Proof of Theorem fser0const
StepHypRef Expression
1 simpr 110 . . . . . 6 (((𝑁𝑍𝑛𝑍) ∧ 𝑛𝑁) → 𝑛𝑁)
21iftrued 3543 . . . . 5 (((𝑁𝑍𝑛𝑍) ∧ 𝑛𝑁) → if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0) = ((𝑍 × {0})‘𝑛))
3 c0ex 7953 . . . . . . 7 0 ∈ V
43fvconst2 5734 . . . . . 6 (𝑛𝑍 → ((𝑍 × {0})‘𝑛) = 0)
54ad2antlr 489 . . . . 5 (((𝑁𝑍𝑛𝑍) ∧ 𝑛𝑁) → ((𝑍 × {0})‘𝑛) = 0)
62, 5eqtrd 2210 . . . 4 (((𝑁𝑍𝑛𝑍) ∧ 𝑛𝑁) → if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0) = 0)
7 simpr 110 . . . . 5 (((𝑁𝑍𝑛𝑍) ∧ ¬ 𝑛𝑁) → ¬ 𝑛𝑁)
87iffalsed 3546 . . . 4 (((𝑁𝑍𝑛𝑍) ∧ ¬ 𝑛𝑁) → if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0) = 0)
9 eluzelz 9539 . . . . . . 7 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
10 fser0const.z . . . . . . 7 𝑍 = (ℤ𝑀)
119, 10eleq2s 2272 . . . . . 6 (𝑛𝑍𝑛 ∈ ℤ)
12 eluzelz 9539 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1312, 10eleq2s 2272 . . . . . 6 (𝑁𝑍𝑁 ∈ ℤ)
14 zdcle 9331 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑛𝑁)
1511, 13, 14syl2anr 290 . . . . 5 ((𝑁𝑍𝑛𝑍) → DECID 𝑛𝑁)
16 exmiddc 836 . . . . 5 (DECID 𝑛𝑁 → (𝑛𝑁 ∨ ¬ 𝑛𝑁))
1715, 16syl 14 . . . 4 ((𝑁𝑍𝑛𝑍) → (𝑛𝑁 ∨ ¬ 𝑛𝑁))
186, 8, 17mpjaodan 798 . . 3 ((𝑁𝑍𝑛𝑍) → if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0) = 0)
1918mpteq2dva 4095 . 2 (𝑁𝑍 → (𝑛𝑍 ↦ if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑛𝑍 ↦ 0))
20 fconstmpt 4675 . 2 (𝑍 × {0}) = (𝑛𝑍 ↦ 0)
2119, 20eqtr4di 2228 1 (𝑁𝑍 → (𝑛𝑍 ↦ if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  ifcif 3536  {csn 3594   class class class wbr 4005  cmpt 4066   × cxp 4626  cfv 5218  0cc0 7813  cle 7995  cz 9255  cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  isumz  11399
  Copyright terms: Public domain W3C validator