| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fser0const | GIF version | ||
| Description: Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| fser0const.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| fser0const | ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → 𝑛 ≤ 𝑁) | |
| 2 | 1 | iftrued 3609 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = ((𝑍 × {0})‘𝑛)) |
| 3 | c0ex 8148 | . . . . . . 7 ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 5859 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → ((𝑍 × {0})‘𝑛) = 0) |
| 5 | 4 | ad2antlr 489 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → ((𝑍 × {0})‘𝑛) = 0) |
| 6 | 2, 5 | eqtrd 2262 | . . . 4 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
| 7 | simpr 110 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑛 ≤ 𝑁) → ¬ 𝑛 ≤ 𝑁) | |
| 8 | 7 | iffalsed 3612 | . . . 4 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
| 9 | eluzelz 9739 | . . . . . . 7 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
| 10 | fser0const.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 11 | 9, 10 | eleq2s 2324 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
| 12 | eluzelz 9739 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 13 | 12, 10 | eleq2s 2324 | . . . . . 6 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| 14 | zdcle 9531 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑛 ≤ 𝑁) | |
| 15 | 11, 13, 14 | syl2anr 290 | . . . . 5 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → DECID 𝑛 ≤ 𝑁) |
| 16 | exmiddc 841 | . . . . 5 ⊢ (DECID 𝑛 ≤ 𝑁 → (𝑛 ≤ 𝑁 ∨ ¬ 𝑛 ≤ 𝑁)) | |
| 17 | 15, 16 | syl 14 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → (𝑛 ≤ 𝑁 ∨ ¬ 𝑛 ≤ 𝑁)) |
| 18 | 6, 8, 17 | mpjaodan 803 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
| 19 | 18 | mpteq2dva 4174 | . 2 ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑛 ∈ 𝑍 ↦ 0)) |
| 20 | fconstmpt 4766 | . 2 ⊢ (𝑍 × {0}) = (𝑛 ∈ 𝑍 ↦ 0) | |
| 21 | 19, 20 | eqtr4di 2280 | 1 ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ifcif 3602 {csn 3666 class class class wbr 4083 ↦ cmpt 4145 × cxp 4717 ‘cfv 5318 0cc0 8007 ≤ cle 8190 ℤcz 9454 ℤ≥cuz 9730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 |
| This theorem is referenced by: isumz 11908 |
| Copyright terms: Public domain | W3C validator |