Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fser0const | GIF version |
Description: Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.) |
Ref | Expression |
---|---|
fser0const.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
fser0const | ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → 𝑛 ≤ 𝑁) | |
2 | 1 | iftrued 3527 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = ((𝑍 × {0})‘𝑛)) |
3 | c0ex 7893 | . . . . . . 7 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 5701 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → ((𝑍 × {0})‘𝑛) = 0) |
5 | 4 | ad2antlr 481 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → ((𝑍 × {0})‘𝑛) = 0) |
6 | 2, 5 | eqtrd 2198 | . . . 4 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
7 | simpr 109 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑛 ≤ 𝑁) → ¬ 𝑛 ≤ 𝑁) | |
8 | 7 | iffalsed 3530 | . . . 4 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
9 | eluzelz 9475 | . . . . . . 7 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
10 | fser0const.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
11 | 9, 10 | eleq2s 2261 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
12 | eluzelz 9475 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
13 | 12, 10 | eleq2s 2261 | . . . . . 6 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
14 | zdcle 9267 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑛 ≤ 𝑁) | |
15 | 11, 13, 14 | syl2anr 288 | . . . . 5 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → DECID 𝑛 ≤ 𝑁) |
16 | exmiddc 826 | . . . . 5 ⊢ (DECID 𝑛 ≤ 𝑁 → (𝑛 ≤ 𝑁 ∨ ¬ 𝑛 ≤ 𝑁)) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → (𝑛 ≤ 𝑁 ∨ ¬ 𝑛 ≤ 𝑁)) |
18 | 6, 8, 17 | mpjaodan 788 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
19 | 18 | mpteq2dva 4072 | . 2 ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑛 ∈ 𝑍 ↦ 0)) |
20 | fconstmpt 4651 | . 2 ⊢ (𝑍 × {0}) = (𝑛 ∈ 𝑍 ↦ 0) | |
21 | 19, 20 | eqtr4di 2217 | 1 ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ifcif 3520 {csn 3576 class class class wbr 3982 ↦ cmpt 4043 × cxp 4602 ‘cfv 5188 0cc0 7753 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: isumz 11330 |
Copyright terms: Public domain | W3C validator |