Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fser0const | GIF version |
Description: Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.) |
Ref | Expression |
---|---|
fser0const.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
fser0const | ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → 𝑛 ≤ 𝑁) | |
2 | 1 | iftrued 3512 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = ((𝑍 × {0})‘𝑛)) |
3 | c0ex 7872 | . . . . . . 7 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 5683 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → ((𝑍 × {0})‘𝑛) = 0) |
5 | 4 | ad2antlr 481 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → ((𝑍 × {0})‘𝑛) = 0) |
6 | 2, 5 | eqtrd 2190 | . . . 4 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
7 | simpr 109 | . . . . 5 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑛 ≤ 𝑁) → ¬ 𝑛 ≤ 𝑁) | |
8 | 7 | iffalsed 3515 | . . . 4 ⊢ (((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑛 ≤ 𝑁) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
9 | eluzelz 9448 | . . . . . . 7 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
10 | fser0const.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
11 | 9, 10 | eleq2s 2252 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
12 | eluzelz 9448 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
13 | 12, 10 | eleq2s 2252 | . . . . . 6 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
14 | zdcle 9240 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑛 ≤ 𝑁) | |
15 | 11, 13, 14 | syl2anr 288 | . . . . 5 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → DECID 𝑛 ≤ 𝑁) |
16 | exmiddc 822 | . . . . 5 ⊢ (DECID 𝑛 ≤ 𝑁 → (𝑛 ≤ 𝑁 ∨ ¬ 𝑛 ≤ 𝑁)) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → (𝑛 ≤ 𝑁 ∨ ¬ 𝑛 ≤ 𝑁)) |
18 | 6, 8, 17 | mpjaodan 788 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ 𝑍) → if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0) = 0) |
19 | 18 | mpteq2dva 4054 | . 2 ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑛 ∈ 𝑍 ↦ 0)) |
20 | fconstmpt 4633 | . 2 ⊢ (𝑍 × {0}) = (𝑛 ∈ 𝑍 ↦ 0) | |
21 | 19, 20 | eqtr4di 2208 | 1 ⊢ (𝑁 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ if(𝑛 ≤ 𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 820 = wceq 1335 ∈ wcel 2128 ifcif 3505 {csn 3560 class class class wbr 3965 ↦ cmpt 4025 × cxp 4584 ‘cfv 5170 0cc0 7732 ≤ cle 7913 ℤcz 9167 ℤ≥cuz 9439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-inn 8834 df-n0 9091 df-z 9168 df-uz 9440 |
This theorem is referenced by: isumz 11286 |
Copyright terms: Public domain | W3C validator |