| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8134 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℂcc 7993 0cc0 7995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: mulap0r 8758 mulap0 8797 mul0eqap 8813 diveqap0 8825 eqneg 8875 div2subap 8980 prodgt0 8995 un0addcl 9398 un0mulcl 9399 modsumfzodifsn 10613 ser0 10750 ser0f 10751 abs00ap 11568 abs00 11570 abssubne0 11597 mul0inf 11747 clim0c 11792 sumrbdclem 11883 summodclem2a 11887 zsumdc 11890 fsum3 11893 isumz 11895 isumss 11897 fisumss 11898 fsum3cvg2 11900 fsum3ser 11903 fsumcl2lem 11904 fsumcl 11906 fsumadd 11912 fsumsplit 11913 sumsnf 11915 sumsplitdc 11938 fsummulc2 11954 ef0lem 12166 ef4p 12200 tanvalap 12214 modprm0 12772 pcmpt2 12862 4sqlem10 12905 4sqlem11 12919 fsumcncntop 15235 limcimolemlt 15332 dvmptcmulcn 15389 dvmptfsum 15393 dveflem 15394 dvef 15395 plyf 15405 elplyr 15408 elplyd 15409 ply1term 15411 plyaddlem 15417 plymullem 15418 plycolemc 15426 plycn 15430 dvply1 15433 ptolemy 15492 lgsdir2 15706 lgsdir 15708 apdiff 16375 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |