| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8099 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ℂcc 7958 0cc0 7960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-i2m1 8065 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: mulap0r 8723 mulap0 8762 mul0eqap 8778 diveqap0 8790 eqneg 8840 div2subap 8945 prodgt0 8960 un0addcl 9363 un0mulcl 9364 modsumfzodifsn 10578 ser0 10715 ser0f 10716 abs00ap 11488 abs00 11490 abssubne0 11517 mul0inf 11667 clim0c 11712 sumrbdclem 11803 summodclem2a 11807 zsumdc 11810 fsum3 11813 isumz 11815 isumss 11817 fisumss 11818 fsum3cvg2 11820 fsum3ser 11823 fsumcl2lem 11824 fsumcl 11826 fsumadd 11832 fsumsplit 11833 sumsnf 11835 sumsplitdc 11858 fsummulc2 11874 ef0lem 12086 ef4p 12120 tanvalap 12134 modprm0 12692 pcmpt2 12782 4sqlem10 12825 4sqlem11 12839 fsumcncntop 15154 limcimolemlt 15251 dvmptcmulcn 15308 dvmptfsum 15312 dveflem 15313 dvef 15314 plyf 15324 elplyr 15327 elplyd 15328 ply1term 15330 plyaddlem 15336 plymullem 15337 plycolemc 15345 plycn 15349 dvply1 15352 ptolemy 15411 lgsdir2 15625 lgsdir 15627 apdiff 16189 iswomni0 16192 |
| Copyright terms: Public domain | W3C validator |