| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8064 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ℂcc 7923 0cc0 7925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-i2m1 8030 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: mulap0r 8688 mulap0 8727 mul0eqap 8743 diveqap0 8755 eqneg 8805 div2subap 8910 prodgt0 8925 un0addcl 9328 un0mulcl 9329 modsumfzodifsn 10541 ser0 10678 ser0f 10679 abs00ap 11373 abs00 11375 abssubne0 11402 mul0inf 11552 clim0c 11597 sumrbdclem 11688 summodclem2a 11692 zsumdc 11695 fsum3 11698 isumz 11700 isumss 11702 fisumss 11703 fsum3cvg2 11705 fsum3ser 11708 fsumcl2lem 11709 fsumcl 11711 fsumadd 11717 fsumsplit 11718 sumsnf 11720 sumsplitdc 11743 fsummulc2 11759 ef0lem 11971 ef4p 12005 tanvalap 12019 modprm0 12577 pcmpt2 12667 4sqlem10 12710 4sqlem11 12724 fsumcncntop 15039 limcimolemlt 15136 dvmptcmulcn 15193 dvmptfsum 15197 dveflem 15198 dvef 15199 plyf 15209 elplyr 15212 elplyd 15213 ply1term 15215 plyaddlem 15221 plymullem 15222 plycolemc 15230 plycn 15234 dvply1 15237 ptolemy 15296 lgsdir2 15510 lgsdir 15512 apdiff 15987 iswomni0 15990 |
| Copyright terms: Public domain | W3C validator |