| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8063 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ℂcc 7922 0cc0 7924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-i2m1 8029 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: mulap0r 8687 mulap0 8726 mul0eqap 8742 diveqap0 8754 eqneg 8804 div2subap 8909 prodgt0 8924 un0addcl 9327 un0mulcl 9328 modsumfzodifsn 10539 ser0 10676 ser0f 10677 abs00ap 11344 abs00 11346 abssubne0 11373 mul0inf 11523 clim0c 11568 sumrbdclem 11659 summodclem2a 11663 zsumdc 11666 fsum3 11669 isumz 11671 isumss 11673 fisumss 11674 fsum3cvg2 11676 fsum3ser 11679 fsumcl2lem 11680 fsumcl 11682 fsumadd 11688 fsumsplit 11689 sumsnf 11691 sumsplitdc 11714 fsummulc2 11730 ef0lem 11942 ef4p 11976 tanvalap 11990 modprm0 12548 pcmpt2 12638 4sqlem10 12681 4sqlem11 12695 fsumcncntop 15010 limcimolemlt 15107 dvmptcmulcn 15164 dvmptfsum 15168 dveflem 15169 dvef 15170 plyf 15180 elplyr 15183 elplyd 15184 ply1term 15186 plyaddlem 15192 plymullem 15193 plycolemc 15201 plycn 15205 dvply1 15208 ptolemy 15267 lgsdir2 15481 lgsdir 15483 apdiff 15949 iswomni0 15952 |
| Copyright terms: Public domain | W3C validator |