Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7912 | . 2 ⊢ 0 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7772 0cc0 7774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-i2m1 7879 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: mulap0r 8534 mulap0 8572 mul0eqap 8588 diveqap0 8599 eqneg 8649 div2subap 8754 prodgt0 8768 un0addcl 9168 un0mulcl 9169 modsumfzodifsn 10352 ser0 10470 ser0f 10471 abs00ap 11026 abs00 11028 abssubne0 11055 mul0inf 11204 clim0c 11249 sumrbdclem 11340 summodclem2a 11344 zsumdc 11347 fsum3 11350 isumz 11352 isumss 11354 fisumss 11355 fsum3cvg2 11357 fsum3ser 11360 fsumcl2lem 11361 fsumcl 11363 fsumadd 11369 fsumsplit 11370 sumsnf 11372 sumsplitdc 11395 fsummulc2 11411 ef0lem 11623 ef4p 11657 tanvalap 11671 modprm0 12208 pcmpt2 12296 4sqlem10 12339 fsumcncntop 13350 limcimolemlt 13427 dvmptcmulcn 13477 dveflem 13481 dvef 13482 ptolemy 13539 lgsdir2 13728 lgsdir 13730 apdiff 14080 iswomni0 14083 |
Copyright terms: Public domain | W3C validator |