| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8018 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7877 0cc0 7879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-i2m1 7984 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: mulap0r 8642 mulap0 8681 mul0eqap 8697 diveqap0 8709 eqneg 8759 div2subap 8864 prodgt0 8879 un0addcl 9282 un0mulcl 9283 modsumfzodifsn 10488 ser0 10625 ser0f 10626 abs00ap 11227 abs00 11229 abssubne0 11256 mul0inf 11406 clim0c 11451 sumrbdclem 11542 summodclem2a 11546 zsumdc 11549 fsum3 11552 isumz 11554 isumss 11556 fisumss 11557 fsum3cvg2 11559 fsum3ser 11562 fsumcl2lem 11563 fsumcl 11565 fsumadd 11571 fsumsplit 11572 sumsnf 11574 sumsplitdc 11597 fsummulc2 11613 ef0lem 11825 ef4p 11859 tanvalap 11873 modprm0 12423 pcmpt2 12513 4sqlem10 12556 4sqlem11 12570 fsumcncntop 14803 limcimolemlt 14900 dvmptcmulcn 14957 dvmptfsum 14961 dveflem 14962 dvef 14963 plyf 14973 elplyr 14976 elplyd 14977 ply1term 14979 plyaddlem 14985 plymullem 14986 plycolemc 14994 plycn 14998 dvply1 15001 ptolemy 15060 lgsdir2 15274 lgsdir 15276 apdiff 15692 iswomni0 15695 |
| Copyright terms: Public domain | W3C validator |