![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7577 | . 2 ⊢ 0 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 ℂcc 7445 0cc0 7447 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-17 1471 ax-ial 1479 ax-ext 2077 ax-1cn 7535 ax-icn 7537 ax-addcl 7538 ax-mulcl 7540 ax-i2m1 7547 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 df-clel 2091 |
This theorem is referenced by: mulap0r 8189 mulap0 8220 diveqap0 8246 eqneg 8296 div2subap 8399 prodgt0 8410 un0addcl 8804 un0mulcl 8805 modsumfzodifsn 9952 ser0 10080 ser0f 10081 abs00ap 10626 abssubne0 10655 clim0c 10845 sumrbdclem 10934 summodclem2a 10939 zsumdc 10942 fsum3 10945 isumz 10947 isumss 10949 fisumss 10950 fsum3cvg2 10952 fsum3ser 10955 fsumcl2lem 10956 fsumcl 10958 fsumadd 10964 fsumsplit 10965 sumsnf 10967 sumsplitdc 10990 fsummulc2 11006 ef0lem 11114 ef4p 11148 tanvalap 11163 |
Copyright terms: Public domain | W3C validator |