Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7887 | . 2 ⊢ 0 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7747 0cc0 7749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-i2m1 7854 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: mulap0r 8509 mulap0 8547 mul0eqap 8563 diveqap0 8574 eqneg 8624 div2subap 8729 prodgt0 8743 un0addcl 9143 un0mulcl 9144 modsumfzodifsn 10327 ser0 10445 ser0f 10446 abs00ap 11000 abs00 11002 abssubne0 11029 mul0inf 11178 clim0c 11223 sumrbdclem 11314 summodclem2a 11318 zsumdc 11321 fsum3 11324 isumz 11326 isumss 11328 fisumss 11329 fsum3cvg2 11331 fsum3ser 11334 fsumcl2lem 11335 fsumcl 11337 fsumadd 11343 fsumsplit 11344 sumsnf 11346 sumsplitdc 11369 fsummulc2 11385 ef0lem 11597 ef4p 11631 tanvalap 11645 modprm0 12182 pcmpt2 12270 4sqlem10 12313 fsumcncntop 13156 limcimolemlt 13233 dvmptcmulcn 13283 dveflem 13287 dvef 13288 ptolemy 13345 lgsdir2 13534 lgsdir 13536 apdiff 13887 iswomni0 13890 |
Copyright terms: Public domain | W3C validator |