| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8037 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7896 0cc0 7898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-i2m1 8003 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: mulap0r 8661 mulap0 8700 mul0eqap 8716 diveqap0 8728 eqneg 8778 div2subap 8883 prodgt0 8898 un0addcl 9301 un0mulcl 9302 modsumfzodifsn 10507 ser0 10644 ser0f 10645 abs00ap 11246 abs00 11248 abssubne0 11275 mul0inf 11425 clim0c 11470 sumrbdclem 11561 summodclem2a 11565 zsumdc 11568 fsum3 11571 isumz 11573 isumss 11575 fisumss 11576 fsum3cvg2 11578 fsum3ser 11581 fsumcl2lem 11582 fsumcl 11584 fsumadd 11590 fsumsplit 11591 sumsnf 11593 sumsplitdc 11616 fsummulc2 11632 ef0lem 11844 ef4p 11878 tanvalap 11892 modprm0 12450 pcmpt2 12540 4sqlem10 12583 4sqlem11 12597 fsumcncntop 14911 limcimolemlt 15008 dvmptcmulcn 15065 dvmptfsum 15069 dveflem 15070 dvef 15071 plyf 15081 elplyr 15084 elplyd 15085 ply1term 15087 plyaddlem 15093 plymullem 15094 plycolemc 15102 plycn 15106 dvply1 15109 ptolemy 15168 lgsdir2 15382 lgsdir 15384 apdiff 15805 iswomni0 15808 |
| Copyright terms: Public domain | W3C validator |