![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8011 | . 2 ⊢ 0 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℂcc 7870 0cc0 7872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-i2m1 7977 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: mulap0r 8634 mulap0 8673 mul0eqap 8689 diveqap0 8701 eqneg 8751 div2subap 8856 prodgt0 8871 un0addcl 9273 un0mulcl 9274 modsumfzodifsn 10467 ser0 10604 ser0f 10605 abs00ap 11206 abs00 11208 abssubne0 11235 mul0inf 11384 clim0c 11429 sumrbdclem 11520 summodclem2a 11524 zsumdc 11527 fsum3 11530 isumz 11532 isumss 11534 fisumss 11535 fsum3cvg2 11537 fsum3ser 11540 fsumcl2lem 11541 fsumcl 11543 fsumadd 11549 fsumsplit 11550 sumsnf 11552 sumsplitdc 11575 fsummulc2 11591 ef0lem 11803 ef4p 11837 tanvalap 11851 modprm0 12392 pcmpt2 12482 4sqlem10 12525 4sqlem11 12539 fsumcncntop 14724 limcimolemlt 14818 dvmptcmulcn 14868 dveflem 14872 dvef 14873 plyf 14883 elplyr 14886 elplyd 14887 ply1term 14889 plyaddlem 14895 plymullem 14896 ptolemy 14959 lgsdir2 15149 lgsdir 15151 apdiff 15538 iswomni0 15541 |
Copyright terms: Public domain | W3C validator |