![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > genpassg | GIF version |
Description: Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.) |
Ref | Expression |
---|---|
genpelvl.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) |
genpelvl.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
genpassg.4 | ⊢ dom 𝐹 = (P × P) |
genpassg.5 | ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) |
genpassg.6 | ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) |
Ref | Expression |
---|---|
genpassg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genpelvl.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) | |
2 | genpelvl.2 | . . 3 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | genpassg.4 | . . 3 ⊢ dom 𝐹 = (P × P) | |
4 | genpassg.5 | . . 3 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) | |
5 | genpassg.6 | . . 3 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) | |
6 | 1, 2, 3, 4, 5 | genpassl 6986 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶)))) |
7 | 1, 2, 3, 4, 5 | genpassu 6987 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶)))) |
8 | 4 | caovcl 5734 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) |
9 | 4 | caovcl 5734 | . . . . 5 ⊢ (((𝐴𝐹𝐵) ∈ P ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P) |
10 | 8, 9 | sylan 277 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P) |
11 | 10 | 3impa 1134 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P) |
12 | 4 | caovcl 5734 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵𝐹𝐶) ∈ P) |
13 | 4 | caovcl 5734 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ (𝐵𝐹𝐶) ∈ P) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P) |
14 | 12, 13 | sylan2 280 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝐵 ∈ P ∧ 𝐶 ∈ P)) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P) |
15 | 14 | 3impb 1135 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P) |
16 | preqlu 6934 | . . 3 ⊢ ((((𝐴𝐹𝐵)𝐹𝐶) ∈ P ∧ (𝐴𝐹(𝐵𝐹𝐶)) ∈ P) → (((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) ↔ ((1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ∧ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶)))))) | |
17 | 11, 15, 16 | syl2anc 403 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) ↔ ((1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ∧ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶)))))) |
18 | 6, 7, 17 | mpbir2and 886 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ∃wrex 2354 {crab 2357 〈cop 3425 × cxp 4399 dom cdm 4401 ‘cfv 4969 (class class class)co 5591 ↦ cmpt2 5593 1st c1st 5844 2nd c2nd 5845 Qcnq 6742 Pcnp 6753 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4084 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-qs 6228 df-ni 6766 df-nqqs 6810 df-inp 6928 |
This theorem is referenced by: addassprg 7041 mulassprg 7043 |
Copyright terms: Public domain | W3C validator |