ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpassg GIF version

Theorem genpassg 7522
Description: Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpassg.4 dom 𝐹 = (P × P)
genpassg.5 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
genpassg.6 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
Assertion
Ref Expression
genpassg ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔   𝐶,𝑓,𝑔,,𝑣,𝑤,𝑥,𝑦,𝑧   ,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧

Proof of Theorem genpassg
StepHypRef Expression
1 genpelvl.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
3 genpassg.4 . . 3 dom 𝐹 = (P × P)
4 genpassg.5 . . 3 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
5 genpassg.6 . . 3 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
61, 2, 3, 4, 5genpassl 7520 . 2 ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))))
71, 2, 3, 4, 5genpassu 7521 . 2 ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))
84caovcl 6026 . . . . 5 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
94caovcl 6026 . . . . 5 (((𝐴𝐹𝐵) ∈ P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P)
108, 9sylan 283 . . . 4 (((𝐴P𝐵P) ∧ 𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P)
11103impa 1194 . . 3 ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P)
124caovcl 6026 . . . . 5 ((𝐵P𝐶P) → (𝐵𝐹𝐶) ∈ P)
134caovcl 6026 . . . . 5 ((𝐴P ∧ (𝐵𝐹𝐶) ∈ P) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P)
1412, 13sylan2 286 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P)
15143impb 1199 . . 3 ((𝐴P𝐵P𝐶P) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P)
16 preqlu 7468 . . 3 ((((𝐴𝐹𝐵)𝐹𝐶) ∈ P ∧ (𝐴𝐹(𝐵𝐹𝐶)) ∈ P) → (((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) ↔ ((1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ∧ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))))
1711, 15, 16syl2anc 411 . 2 ((𝐴P𝐵P𝐶P) → (((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) ↔ ((1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ∧ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))))
186, 7, 17mpbir2and 944 1 ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  cop 3595   × cxp 4623  dom cdm 4625  cfv 5215  (class class class)co 5872  cmpo 5874  1st c1st 6136  2nd c2nd 6137  Qcnq 7276  Pcnp 7287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-qs 6538  df-ni 7300  df-nqqs 7344  df-inp 7462
This theorem is referenced by:  addassprg  7575  mulassprg  7577
  Copyright terms: Public domain W3C validator